e-POSIX

The definitive and complete
Eiffel to Standard C and
POSIX 1003.1 binding

written by Berend de Boer

1 Design notes

11
1.2
13
1.4
15

Why an entire reimplementation?
Goals and guidelines

Class structure

Clients of this library

Forking

2 Installation

2.1

2.1.1
2.1.2
2.2

2.2.1
2.2.2
2.2.3
2.2.4

Compiling the C code
Compiling on Unix
Compiling on Windows

Vendor specific notes
ISE Eiffel
SmallEiffel
Visual Eiffel
Halstenbach Eiffel

3 Basic Posix examples

3.1
3.2
3.3
3.4
3.5
3.6
3.7

Working with files

Working with file descriptors
Working with the file system
Executing a child command
Current time

Accessing environment variables
Allocating memory

4 More advanced Posix examples

4.1
4.2
4.3
4.4
4.5
4.6
4.7

Locking portions of files
Forking a child process
Creating a daemon

Talking to your modem
Writing CGI programs
Logging messages and errors
More examples

5 Standard C examples

51
5.2
5.3
54

Allocating memory

Accessing environment variables
Working with streams

Working with the file system

6 Accessing C headers

6.1
6.2
6.3

Making C Headers available to Eiffel
Distinction between Standard C andsix headers

C translation details

Contents

A Posix function to Eiffel class mapping list

B Short (flat) listing of Standard C classes

B.1
B.2
B.3
B.4
B.5
B.6
B.7
B.8
B.9

STDC_BASE
STDC_CONSTANTS
STDC_CURRENT_PROCESS
STDC_DYNAMIC_MEMORY
STDC_ENV_VAR

STDC_FILE
STDC_FILE_SYSTEM
STDC_SYSTEM

STDC_TIME

C Short (flat) listing ofrPOsIX classes

Ci1
C.2
C3
C4
C5
C.6
Cc.7
(O]
C.9
C.10
cl1
C.12
C.13
C.14
C.15
C.16
Cc.17
C.18
C.19
C.20
c.z21
C.22
C.23
C.24

POSIX_ASYNC_IO_REQUEST
POSIX_BASE

POSIX_CGI
POSIX_CHILD_PROCESS
POSIX_CONSTANTS
POSIX_CURRENT_PROCESS
POSIX_DAEMON
POSIX_DIRECTORY
BASE_FILE_DESCRIPTOR
POSIX_EXEC_PROCESS
POSIX_FILE_DESCRIPTOR
POSIX_FILE_SYSTEM
POSIX_FORK_ROOT
POSIX_GROUP
POSIX_LOCK
POSIX_MEMORY_MAP
POSIX_PERMISSIONS
POSIX_SIGNAL
POSIX_STATUS
POSIX_SYSTEM
POSIX_TERMIOS
POSIX_TIMED_COMMAND
POSIX_USER
XML_GENERATOR

To do

STDC_CURRENT_PROCESS
STDC_FILE
STDC_LOCALE_NUMERIC
STDC_PATH

STDC_STATUS
STDC_STATUS

STDC_TIME
POSIX_CURRENT_PROCESS

38

43
43
44
45
46
49
50
55
56
57

58
58
61
62
63
64
68
69
70
71
74
76
79
82
83
84
85
87
90
91
92
94
96
97
98

100
100
100
100
100
100
100
100
100

POSIX_EXEC_PROCESS
POSIX_ FILE_DESCRIPTOR
POSIX_MEMORY_MAP
POSIX_SEMAPHORE
POSIX_PATH

MQUEUE
DIRECTORY_BROWSER
SUS_SYSLOG

Other

Known bugs

Bibliography

Index

100
101
101
101
101
101
101
101
102
102

103

104

Introduction

It has been a great pleasure for me when | could announce the first public alpha release of this
manual. And as beta time is nearing I'm even more pleased. Writing libraries like this is boring
stuff. Every Eiffel programmer should have had access to all those Standardr©simdoutines

long ago. Anyway, how you and me have. Whatever a C programmer can do, you can. And even
more safe as this library protects you of inadvertently calling routines that are not portable (because
they’re simply not there :-)).

I will support this library, so bug reports and wishes are gladly accepted. In the future, | hope to be
able to expand this library to add more stuff from the Open Unix Specification, particularly sockets
and curses. Perhaps the authors of the existing Eiffel implementations forthesae willing to
create one single unified library.

Have fun using this library and | like to hear about applications!

Licensing

This software is licensed under the Eiffel Forum Freeware License, version 1. This license can be
found in theforum.txt file. Basically this license allows you to do anything with it, i.e. use it

for commercial or Open Source software without restrictions. But don’t sue me if something goes
wrong. And give me some credits.

Also explicitly allowed is copying parts of this library to your own, for example copying certain
Standard C or POSIX header wrappings. | prefer linking, but you don’t have to retype everything
if you don’t want to link.

Support

ePosIXx is a fully supported program. You can send requests for help directly to me. But to
help others profit from the discussion, and perhaps to get feedback when I'm short on time, it is
suggested that support messages are seqidsix@egroups.com

Latest versions and announcements are available frigoy//www.egroups.com/group
/eposix
Commercial support

I’'m available to give companies or organisations a one or two day courser@ingand in partic-
ularly this library. Prices are 1500 EUR a day, excluding VAT, travel and hotel expenses. Contact
me atberend@pobox.com

Acknowledgements

| like to thank people who, one way or another, have helped me in creating this library. They're
listed in order they have been involved with this library or manual:

mailto:eposix@egroups.com
http://www.egroups.com/group/eposix
http://www.egroups.com/group/eposix
http://www.egroups.com/group/eposix
http://www.egroups.com/group/eposix
http://www.egroups.com/group/eposix
http://www.egroups.com/group/eposix
http://www.egroups.com/group/eposix
mailto:berend@pobox.com

e FEugene Melekhov<eugene melekhov@object-tools.cos compiled it with Visual Eiffel.
As Visual Eiffel is the most strict compiler, he found a great many oversights that SmallEiffel
didn't catch.

e |da de Boer <ida@gameren.ni>: it was she who provided you with tiesixto Eiffel map-
ping table inappendix A.

e Steve Harris <scharris@worldnet.att.net>: suggested improvements, found a CAT call
problem and we had an interesting discussion about forking.

e JOrgen Tegnér <teg@post.netlink.sexeported a problem with an example, and a bug in
POSIX_EXEC_PROCESS.

e Marcio Marchini <mgm@magma.ca> gave very useful advice and patches to compile e-
POSIX better on Windows.

Colophon

The text of this manual was entered with GNU Emacs 20.5.1 on RedHat Linux 6.2. It was typeset
with pdfTeX using the CongXt macro package, se#tp://www.pragma-ade.com . BON
diagrams were created WithETAPOST.

mailto:eugene_melekhov@object-tools.com
mailto:eugene_melekhov@object-tools.com
mailto:eugene_melekhov@object-tools.com
mailto:ida@gameren.nl
mailto:ida@gameren.nl
mailto:ida@gameren.nl
mailto:ida@gameren.nl
mailto:scharris@worldnet.att.net
mailto:scharris@worldnet.att.net
mailto:scharris@worldnet.att.net
mailto:teg@post.netlink.se
mailto:teg@post.netlink.se
mailto:teg@post.netlink.se
mailto:mqm@magma.ca
mailto:mqm@magma.ca
mailto:mqm@magma.ca
http://www.pragma-ade.com
http://www.pragma-ade.com
http://www.pragma-ade.com
http://www.pragma-ade.com
http://www.pragma-ade.com

Design notes

1.1 Why an entire reimplementation?

One might wonder why | reimplemented the entire Standard Craxstk library when most ven-

dors also have classes that deal with files, the file system, signals and such. Unfortunately, these
classes are nor complete nor very portable between vendors. For someone who wants to com-
pile against all the major vendors —and there are good reasons to do this— there is currently no
portable solution. That's why many portable Eiffel programs more or less contain the same code
again and again. There are some attempts to write more portable libraries, for examipitexthe
File/Directory Handling Cluster by Friedrich Dominicus, but they also are not complete nor is

the implementation satisfactory.

Another attempt is done by the Gobo cluster: it attempts to provide users with a set of classes that
work accross all Eiffel vendors by using only the native facilities offered by each implementation.
This solutation is also not satisfactory. | found Gobo an excellent library and | use it myself in my
xplain2sql project, but | think its approach to portability has the following flaws:

1. Because it uses inheritance to rename classes to a common name, you might use a feature which
is not available in all implementations.

2. The contract for these classes is probably not specifiable: for which platforms and which as-
sumptions are the contracts valid? Are these contracts the same in all implementations?

3. ltis stillincomplete, i.e. it doesn’t cover most of thesix routines.

That's why | started to make the entire Standard C aodix routines available to Eiffel pro-
grammers. All these routines are nicely wrapped in classes. | spend a lot of time designing and
refactoring these, comments and improvements about its structure are very appreciated.

The advantage of makingosix available to Eiffel programmers is that someone doesn’t need to
think about creating a set of portable file and directory classes that work on every known operating
system.POSIXis available on many platforms and for other systems there either is an emulation or
aPosIXx mapping available. It's better to reuse that, instead of reinventing work that took years to
complete.

1.2 Goals and guidelines
The goals and guidelines for this library were:

1. A complete Standard C implementation for those who didn’t have accesstoroutines.
2. A completerosiximplementation.

http://www.eiffel-forum.org/archive/dominicu/fdh.htm
http://www.eiffel-forum.org/archive/dominicu/fdh.htm
http://www.eiffel-forum.org/archive/dominicu/fdh.htm
http://www.eiffel-forum.org/archive/dominicu/fdh.htm
http://www.pobox.com/~berend/xplain

Class structure

> w

10.

Do the job in such a way that it will become the official Eiffelsix mapping.

All classes should satisfy the demands posed by the query—-command separation principle.
The native Standard C amesix routines should be available to those who don’t want to go
through a certain class layer.

If a command fails, an exception code is raised. This differs frorrdisax routines where you

are expected to test for error and query ghmo variable. The only exception isnlink

when the file does not exist, no exception is raised.

posixassumptions should be made explicit. For Eiffel this means specifying explicit pre- and
postconditions.

Uuse of constants to influence the way a method should be avoided by providing clearly named
methods. So instead of passing a constants td>t8IX_FILE.operfunction to open a file
read-only, you can also calpen_read

Attempt to create non-deferred class that refer to an entity that exists mogimeworld. Cre-

ation of an object is binding to that entity, or creation of that entity.

Names should be clear, and Eiffel-like. They should not differ in just one characisrx
names are also made available to ease use of this library for programmers thadsicw
well.

1.3 Class structure

e-POosIX makes available all the Standard C arwkix headers in classes likeAPlI_STDIOand
PAPI_UNISTD You can find more details about the header translatiamapter 6.

However, making the plain C API available is not a very interesting addition to an Eiffel pro-
grammer’s toolkit. Therefore, this library’s second attempt was to make an effective OO-wrapper
mean-time making a careful distinction between what is available in the Standard C and what is
available inrosix This distinction is reflected in posIXs directory structure, sefeggure 1.1

i
cEe
B 3 eposix
{ & Cgdoc
- SiC
- (3 hase
- [C3 capi
- @ papi
- 3 posix
- C3 sapi
B &3 spec
[3ise
- [Cse

L Cgwindows
- (3 standardc
- 23 support
- 23 supportc
- C3sus

- 23 wapi
- LI wincdows
- E3test_suite
- £ util

Figure 1.1 e-Posixdirectory structure

Design notes 3

The raw Standard C API is availablesnc/capi , the OO-wrapper is available 8rc/stan-
dardc . The rawpPosix APl is available insrc/papi , the OO-wrapper is available isrc
/posix

Every Standard C anebsixwrapper is derived from a common root, see digore 1.2:

1. Certain classes are uniquerosix so they all inherit fromPOSIX_BASE

2. Certain classes are derived from or build upon facilities available in Standard C. The Standard
C features are made available in classes derived 80inC_BASEnNd they all start with the
prefix STDC_.posixclasses just inherit from the Standard C classes or add new features. Such
a class inherits from botBTDC_BASENdPOSIX_BASE

3. Certairposixcapabilities are available in neosixplatforms as well, for example in Microsoft
Windows. A large part of thPOSIX_FILE_SYSTEBNdPOSIX_FILE_DESCRIPTO®&asses
can be used on Windows too. In such cases the common functionality is abstracted so it can
more easily be reused. The root of these classes is either the abstract SaE¥OrBASE

*

STDC_BASE

* * *
STDC_BASE ABSTRACT ABSTRACT
* * * *
POSIX_BASE POSIX_BASE POSIX_BASE POSIX_BASE

Figure 1.2 Inheritance structure

The wrapper classes should be fully command-query separated and use clear names. Often the
POSIX name, if applicable, is also made available as an alias. If this is a good thing, I'm not sure. |
hope it facilitates working with the wrapper classes if you already kpogix.

1.4 Clients of this library

For client classes, two important classes 81 @C_CONSTANT&dPOSIX_CONSTANTSee
figure 1.3, The wrapper classes tend to avoid having routines whose behavior drastically depends

4 Forking

on passed constants. But if you need to use constants, your client class can just inherit from these
classes and every Standard C aadix constant is available.

STDC_CONSTANTS

POSIX_CONSTANT.

Figure 1.3 Standard C andosix constants

1.5 Forking

Implementing forking posed some interesting challenges. | started with the basic idea that every
process has a pid:

class PROCESS
feature
pid: INTEGER

end
| wanted to be able to write two kinds of forking. The first one is forking a child as in:

class PARENT

inherit
POSIX_CURRENT_PROCESS

feature

make is
local
child: POSIX_CHILD_PROCESS
do
print ("My pid: ")
print (pid)

Design notes 5

print ("%N")

fork (child)

print ("child’s pid: ")

print (child.pid)

print ("%N")

child.wait_for (True)
end

end
However, | also wanted to fork myself, because that basically is what forking is!
class PARENT

inherit
POSIX_CURRENT_PROCESS
POSIX_CHILD_PROCESS
feature

make is
do
fork (Currenf)
wait
end

executeis
do
-- forked code
end

end

The above code gives a name clash, bec@®B8IX_CURRENT_PROCESS.@da call to the
Posixroutinegetpid , while the child’s pid is a variable, which gets a variable after forking. You
can solve this name clash yourself, but it is most easy to inherit P@8IX_FORK_ROQOTa
clash which has solved this clash already.

If you fork a child, you must wait for it. For a child process, you can @€@SIX CHILD.
wait_for, if you fork yourself, you must us®@OSIX_CURRENT_PROCESS.walthe variable
waited_child_pidwill be set with the pid of the child process thait waited for.

Installation

2.1 Compiling the C code

2.1.1 Compiling on Unix
As the Eiffel to C binding is made available through C code, you have to compile this code into the
object librarylibeposix.a before you can use ther®six classes.
This can be done with:
make libeposix.a

You need GNU make as this Makefile has several features not supported by the BSD make.

2.1.2 Compiling on Windows

For Windows system, the batch fitaakelib.bat can create the eesix library. However,
before you can rumakelib.bat , you probably need to edit the Makefile it uses.

Type:
makelib -msc

to compile the C code with Microsoft’s Visual C compiler. It was tested with version 6. You need
to edit Makefile.msc to set various environment variables and defines to compiler for ISE,
VisualEiffel or SmallEiffel.

Only the Microsoft supplied library did work, i.e. link, with VisualEiffel.
Type:
makelib -bcc

to compile the C code with Borland’s C compiler. It was tested with the free Borland C version 5.5
compiler. You need to edMakefile.bcc to set various environment variables and defines to
compiler for ISE or SmallEiffel.
Type:

makelib -lcc

to compile the C code with elj-win32’s Icc C compiler. You need to &thtkefile.lcc to set
the location where SmallEiffel is installed.

Installation 7

As I've not been able to successfully melt ISE Eiffel 4.5 with Borland C 5.5, | can'’t verify that this
work. However, the Microsoft compiler did work with ISE Eiffel 4.5.

2.2 Vendor specific notes

2.2.1 |SE Eiffel

Due to the fact that | decided to use ELKS2000, in an attempt to make something that finally could
be compiled by more than one compiler, and ISE Eiffel 4.5 is not yet ELKS2000 compliant, e-

posixdoesn’t work out of the box. However, I've compiled and run the Standard C test programs
successfully under the following conditions:

1. 1used Microsoft Windows NT 4, Service Pack 6.

2. lused the Microsoft Visual C 6.0 compiler with Service Pack 3.

3. Ireplaced features likBTRING.is_emptlgy empty andclear by clear_all and perhaps some
more.

TheAce.ace file I've used is provided in theest _suite directory.

2.2.2 SmallEiffel

e-Posixwas developed using SmallEiffel -0.77 betal and beta4 on FreeBSD and Linux.

To successfully compile with SmallEiffel you need:

1. A correctlibeposix.a or libeposix.lib , seesection 2.1 If you have the default elj-
win32 installation, it is as easy as:
makelib -lcc
2. Acorrectloadpath.se
3. Pass either thibeposix.a library or object files to the compiler.

On Unix, compiling a class which usesesix can be done with:
compile MYCLASS make -L/../eposix/ -leposix

Make sure theL option points to the directory where eposix is locatedilseposix.a can be
found.

On Windows, compiling a class which uses@six can be done with:
compile -no_style_warning test_all make libeposix.lib

Again, make sure that the last argument includes the directory viibeposix.lib resides.
This command-line seems to work for all three supported compilers.

On Unix, a typical SmallEiffeloadpath.se looks like:

/eposix/src/sus/
/eposix/src/posix/
/eposix/src/standardc/
leposix/src/spec/sel/
leposix/src/sapi/

8 Vendor specific notes

/eposix/src/papi/
leposix/src/capi/
leposix/src/support/
/eposix/src/base/

On Windows, where most of tireosix APl is not availableloadpath.se can look like:

p:\src\eposix\src\standardc\
p:\src\eposix\src\capil
p:\src\eposix\src\support\
p:\src\eposix\src\spec\se\

Because SmallEiffel has a tendency to provide lots of routines in its kernel classes, a bad thing in
my opinion, | had to write a newNY. My ANY rename$SENERAL.remove_filso | wouldn't get
a conflict withPOSIX_FILE_SYSTEM.remove_file

There is no reason for the presenc&&@NERAL.remove_filé expect this to be removed soon, so
my ANY can be deleted when this has happened.

2.2.3 Visual Eiffel

e-PosIxcompiles almost out of the box with Visual Eiffel 3.3 beta, which is ELKS2000 compliant.
Earlier versions are not supported. My beta missedl.h which was sent to me separately by
ObjectTools. If you miss it, you might want to contact them.

Follow these steps to compile with VisualEiffel:

1. Because VisualEiffel does not yet support theate keyword, use the providelouild _ve.
sh script to replace altreates by the bang bang syntax.
This is a Unix shell script, you there for need a Unix shell on NT. You can download the Cygnus
tools fromhttp://www.redhat.com

2. Add a cluster with name eposix, pointing to #re directory. The providedrc/cluster.
es file will give you a correct cluster. The providetuster.es is specific for Windows.

3. You need to make a one-line changeStbDC_FILE.read_characterUncomment the com-
mented out line, and comment out the line after it.

4. Create a new project. Set the linker supplier option to Microsoft! This should get you some-
where. However, up to now I've not got a stable situation, so some of the code works, and some
doesn't. I'll continue my attempt to make VisualEiffel work.

2.2.4 Halstenbach Eiffel

e-PosIx has not been tested with this compiler.

http://www.redhat.com
http://www.redhat.com
http://www.redhat.com
http://www.redhat.com
http://www.redhat.com

Basic Posix examples

Instead of describing every class and every feature, | decided to show short and simple examples
of common ways to use the Posix library features. If you don't have Posix available, you can try
to replace the POSIX prefix by STDC. Most of the time the POSIX classes are based on the STDC
classes, seehapter 5.

3.1 Working with files

The basic class for working with files, or streams as they are also callr@3&X_FILE There are

two kinds of files: POSIX_TEXT_FILEand POSIX_BINARY_FILEAIthough PosIx systems do

not make a distinction between binary and text files, certain systems you can compile Posix code
on do. On all variants of windows you need this distinction, even if you use the Cygwin libraries.

The first example shows how to open a text file, see also the corresponding BON diagram in
figure 3.1

class EX_FILE1
creation

make
feature

make is
local
file: POSIX_TEXT_FILE
do
create file.open_read("/etdgroup")
from
until
file.eof
loop
file.read_string (256)
print (file.last_string
end
file.close
end

10 Working with files

p—

Figure 3.1 BON diagram of opening a text file.

end

It simply opens a file for reading and prints every line in it. Note that you have to specify the
maximum number of characters you are prepared to read. The minimum characters read are 256,
but perhaps you want to be able to read text files consisting of 1024 characters per line.

Every line that is read includes the end-of-line character if one was present. This is unlike Pascal
for example, but more like Perl. masix provides the featur®OSIX_TEXT_FILE.choghich
removes the last characterlakt_stringif and only if it is an end-of-line character. And that is
unlike Perl, which removes any character. With@six it is not necesary to test for the end-of-

line characters if you just want to remove it in case one is present.

At the end, the file is closed. You don'’t need to explicitly close a file as it will be closed when your
object is garbaged collected. But | think it's a good thing not to rely or depend on this, but to close
your external resources as soon as you're done using them. For example many systems have easily
reached limits on the number of files a process can have open.

In the second example a binary file is created and a string is written to it.
class EX_FILE2

creation

make

Basic Posix examples 11

feature

make is

local
file: POSIX_BINARY_FILE

do
create file.create_write("$HOMEmyfile.tmp)
file.write_string ("hello world.%N’)
file.close

end

end

This example also demonstrates a nice feature that pathnames —file and directory names— have:
if they contain one or more environment variables, they are expanded before the name is used. And
depending on the platform you are running a backslash is turned into a slash or vice versa.

3.2 Working with file descriptors

The file descriptors classes are quite equal to the file classes. The following example opens a file
usingPOSIX_FILE_DESCRIPTO&nd reads the first 64 bytes.

class EX_FD1
creation

make
feature

make is
local
fd: POSIX_FILE_DESCRIPTOR
do
create fd.open_read("/etdgroup’)
fd.read_string(64)
print (fd.last_string
fd.close
end

end

Unlike POSIX_TEXT_FILEthere is no easy way to detect end of line and end of file conditions.
However, a file descriptor can easily be turned into a file as the following example demonstrates.

class EX_FD2

creation

12 Working with file descriptors

make
feature

make is
local
fd: POSIX_FILE_DESCRIPTOR
file: POSIX_TEXT_FILE
do
create fd.open_read("/etdgroug’)
create file.make_from_file_descriptaifd, "r")
from
until
file.eof
loop
file.read_string(256)
print (file.last_string
end
file.close
fd.close
end

end

A file descriptor can also be used to lock, unlock or test for locks on a given file as the following
example demonstrates. See also the accompanying BON diagfamrin3.2.

class EX_FD4
creation

make
feature

make is
local
lock: POSIX_LOCK
fd: POSIX_FILE_DESCRIPTOR
do
create fd.create_read_writg"test.tmp)
fd.write_string ("Test)

create lock.make
lock.set_allow_read
lock.set_start(2)
lock.set_length(1)

if fd.get_lock(lock) then

Basic Posix examples 13

print ("There is already a lockRoN")
end

lock.set_allow _none
lock.set_start(0)
lock.set_length(4)
fd.set_lock(lock)

fd.close
end

end

PerhapsPOSIX_FILE_DESCRIPTOR.get_lotk not entirely command-query separated, but |
couldn’t come up with a better solution. You pas®@SIX_LOCKto get lockand it returns
True if there is already a lock. The passed paranfe@®IX_LOCKis set to the details of the lock.

*

POSIX_BASE

/ \
CO-ED

Figure 3.2 BON diagram of locking a portion of a file.

+
IX_FILE_DESCRIP

A file descriptor also gives you access to the attached terminal, if any. The following example
demonstrates how to read a password without the password appearing on the screen.

class EX_FD3
inherit
POSIX_CURRENT_PROCESS
creation
make

feature

14 Working with the file system

make is
do
print ("Password ")
stdout.flush

-- turn off echo
fd_stdin.terminal.set_echo_inp(alse
fd_stdin.terminal.apply_flush

-- read password
fd_stdin.read_string(256)

-- turn echo back on
fd_stdin.terminal.set_echo_inp(rue)
fd_stdin.terminal.apply_now

print ("%NYour password was')
print (fd_stdin.last_striny
end

end

3.3 Working with the file system
posixdefines many commands to navigate a file system. They're made available?y$i¥ FILE SYSTEM
The following example navigates to the user’'s home directory, create a directory and removes it.

class EX_DIR1

inherit

POSIX_FILE_SYSTEM
rename
make as make_file_system
end

creation
make
feature
make is
do
make_file_system

change_directory("~"
make_directory("qgtest.xyz.tmp

Basic Posix examples 15

remove_directory("qqtest.xyz.tmp
end

end

To get access to the file system, inheriting fromB@SIX_FILE_SYSTENass is easiest. Don't
forget to call the creation routine 0OSIX_FILE_SYSTERhough.

There are also lots of functions to test for existence, readability or writability of filesisUsedifiable
to test if a file is readable and writable.

class EX_DIR2
inherit

POSIX_FILE_SYSTEM
rename
make as make_file_system
end

creation
make
feature

make is
local
perm POSIX_PERMISSIONS
do
make_file_system

print_info (is_existing ("/tmp"), "existingd)

print_info (is_executable("/bin/ls"), "executabl®

print_info (is_readable("/etdpasswd), "readablé)

print_info (is_writable ("/etdpasswd), "writable")

print_info (is_modifiable("/etdpasswd), "readable and writabl§

perm := permissiong’/etdpasswd)

if perm.allow_group_readhen

print ("Group is allowed to readetdpasswd.%N)
else

print ("Group is not allowed to readetdpasswd.%N)
end

if perm.allow_anyone_read_writthen
print ("Anyone is allowed to read file.tmp.%N
else

16 Working with the file system

print ("Anyone is not allowed to read file.tmp.%N
end

end

print_info (ok BOOLEAN what STRING is
do
print ("is_")
print (wha)
print (" returned ")
print (ok)
print (".%N")
end

end

Be aware thaPOSIX_FILE_SYSTEM.is_readahises the real user and group IDs instead of the
effective ones.

As you can seen in the above example you can test for the permissions of a file ugi@ghe PERMISSIONS
class. A new permissions class is created for e®SIX_FILE_SYSTEM.permissicral, so it

is best to cache this object. If the permissions change on the file system, this class does not reflect
reality anymore, because it caches the permissions P@siX_ PERMISSIONS.refreghupdate

the contents. Usget_allow_group_writeset_allow_anyone_reaahd such to set permissions.

e-PosIxalso gives you access to that function using thePOSIX_STATUSlass.
class EX_DIR4

inherit

POSIX_FILE_SYSTEM
rename
make as make_file_system
end

creation
make
feature
make is
local
stat POSIX_STATUS
do

make_file_system

stat := status ("/etdpasswd)
print ("size ")

Basic Posix examples 17

print (stat.size.oyt
print (".%N")
print ("uid: ")
print (stat.permissions.ujd
print (".%N")
end

end

ThePOSIX_STATand through iPOSIX_PERMISSIONS&re also returned BJOSIX_FILE_DESCRIPTOR.
status

Browsing a directory can be done by allocatd®@SIX DIRECTORY¥lass through thBOSIX_FILE_SYSTEM.
browse_directoryeature:

class EX_DIR3
inherit

POSIX_FILE_SYSTEM
rename
make as make_file_system
end

creation
make
feature

make is
local
dir: POSIX_DIRECTORY
do
make_file_system

from
dir := browse_directory(".")
dir.start

until
dir.exhausted

loop
print (dir.item)
print ("%N")
dir.forth

end

dir.close

end

18 Executing a child command

end
As can be seeROSIX_DIRECTORYollows EiffelBase conventions.

3.4 Executing a child command
Any command line can be executed by using B@SIX_SHELL COMMANDBIass. Just pass a
command line anéxecutat.

class EX_CMD

creation
make
feature

make is
local
command POSIX_SHELL COMMAND
do
create command.maké"/bin/ls *")
command.execute
print ("Exit code ")
print (command.exit_codle
print ("%N")
end

end

Of course, unlike filenames and directory names, the passed command line is not subject to en-
vironment variable expansion by Eiffel itself. Any expansion is done by the shell to which the
command is passed.

Often one wants to redirect the output of the program that is being executed. For such cases use
thePOSIX_EXEC_PROCESfss.

class EX_EXEC1
inherit
POSIX_CURRENT_PROCESS
creation
make

feature

Basic Posix examples 19

make is
local
Is: POSIX_EXEC_PROCESS
do
-- necessary under SmallEiffel
ignore_child_stop_signal

-- list contents of current directory
create Is.make_capture_outpytls", <<"-1", ".">>)
Is.execute
print ("Is pid: ")
print (Is.pid)
print ("%N")
from
Is.stdout.read_string512)
until
Is.stdout.eof
loop
print (Is.stdout.last_string
Is.stdout.read_string512
end

-- close captured io
Is.stdout.close

-- wait for process
Is.wait_for (True)
end

end

Besides capturing output, you can also capture the standard input and standard error of the executed
process.

3.5 Current time

e-Posixhas a very complete class to work with times. A time can be set from the current time
by usingPOSIX_TIME.make_from_nowBefore a time can be printed, it needs to be convert-
ed to either local time ouTc. Date and times can be printed using featureslefault_format
local_date_stringlocal_time_stringor a custom format througformat

class EX_TIME1
creation
make

feature

20

Current time

make is
local

do

timel,
time2 POSIX_TIME

create timel.make_from_now

timel.to_local
print_time (timel)
timel.to_utc
print_time (timel)

create time2.make_timé&0, 0, O

print_time (time2

create time2.make_date_timgl970, 10, 31, 6, 55,)0

time2.to_utc
print_time (time2

if time2 < timel then

print ("time2 is less than timel as expected.%N

else

print ("!! time2 is not less than timel.%N

end

end

print_time (time POSIX_TIMB is

do

print ("Date ")

print (time.yeaj

print ("-")

print (time.month

print ("-")

print (time.day

print (" ")

print (time.hou)

print (":")

print (time.minutg
print (":")

print (time.secony
print ("%N")

print ("Weekday ")
print (time.weekday
print ("%N")

print ("default string ")
print (time.default_format
print ("%N")

end

end

Basic Posix examples 21

3.6 Accessing environment variables

With the clasPOSIX_ENV_VARnhe contents of environment variables can be queried. Unfortu-
nately,Posixdoes not define a portable function to set environment variables, but perhaps | should
just addputenv as it is in the Single Unix Specification, so probably available on rrostx
platforms.

class EX_ENV1
creation

make
feature

make is
local
env STDC_ENV_VAR
do
create env.make("HOME")
print (env.valug
print ("%N")
end

end

3.7 Allocating memory

Allocating dynamic memory is very useful, but not portably available for Eiffel programmers. With
POSIX_DYNAMIC_MEMORKhemory can be allocated, read and written to.

class EX_MEM
creation

make
feature

make is

local
mem POSIX_DYNAMIC_MEMORY
byte INTEGER

do
create mem.allocate(256)
mem.poke_byt€2, 57)
byte := mem.peek_byt€?)
mem.resizg512)

22

Allocating memory

end

mem.deallocate
end

More advanced Posix examples

4.1 Locking portions of files

It looks like locking should work, but I've not been able to demonstrate this yet by a correct test
class.

4.2 Forking a child process

Forking is very easy with this Eiffetosiximplementation. The steps:

1. Write a child by inheriting fronPOSIX_FORK_ROO@&nd implementing itexecutemethod.

2. The class that will do the forking, should inherit frd?®SIX_CURRENT_PROCESS

3. Pass the child to the inherited feati®®SIX_CURRENT_PROCESS.farkd the forking has
begun.

The following class shows the process that forks the child.
class

EX_FORK1
inherit
POSIX_CURRENT_PROCESS
POSIX_FILE_SYSTEM
rename
make as make_file_system
end
creation
make

feature

make is
local

24

Forking a child process

do

PO

POSIX_FORK_ROO

v

Figure 4.1 BON diagram of forking a child process.

reader POSIX_TEXT_FILE
stop_sign BOOLEAN
child: FORK_CHILD

make_file_system

-- necessary under SmallEiffel
ignore_child_stop_signal

unlink ("berend.tmp)

make_fifo("berend.tmp, S IRUSR+ S_IWUSR
create child

fork (child)

-- we will now block until file is opened for writing
create reader.open_read"berend.tmp)
from
stop_sign:= False
until
stop_sign
loop
reader.read_string(128

/[X_CURRENT_PROCESS PQSIX_CHILD_PROCESS

More advanced Posix examples 25

print (reader.last_striny

stop_sign:= equal(reader.last_string,"stop%N)
end
reader.close

-- now wait for the writer to terminate
child.wait_for (True)

unlink ("berend.tmp)
end

end

This class just displays anything that the writer, the child class, writes teitke When it rec-
ognizes stop, the reader stops after waiting for the child it has spawned. Note that this is very
important! Wait for any child you have spawned else you might get spurious errors if the process
exits and a child has not yet finished.

The following class shows the forked child.
class FORK_CHILD

inherit

POSIX_FORK_ROOT

feature
executeis
local
writer: POSIX_TEXT_FILE
do
create writer.open_appendberend.tmp)
writer.write_string ("first%N")
writer.write_string ("stop%N)
writer.close
-- we give the reader some time to process these messages
sleep (10)
end
end

4.3 Creating a daemon

Creating a simple daemon is easy if you inherit fre@SIX_DAEMON Implement theexecute
method, and you're done. At run-time, cdBtachto fork off a child. You can caltletachas many
times as you want to spawn daemons.

26 Talking to your modem

class EX_DAEMON
inherit
POSIX_DAEMON
creation
make
feature -- the parent

make is
do
-- necessary under SmallEiffel
ignore_child_stop_signal

if argument_count 0 then
print ("Options%N")
print ("-d start daemon%N
else
if equalargumen(l), "-d") then
detach
print ("Daemon started.%N
print ("lts pid: ")
print (last_child_pig
print ("%N")
end
end
end

feature -- the daemon

executeis
do
-- daemon stays alive for 20 seconds
sleep (20)
end

end

4.4 Talking to your modem

With e-Posixyou can talk to your modem. The implementation contains not all the details to write
a full-featured program as minicom, but they will be added upon request.

More advanced Posix examples

27

The following example tries to talk to your modem —which is expected to bdeafmodem —
and queries its manufacturer.

class EX_|

inherit

MODEM

POSIX_CURRENT_PROCESS

creation

make

feature

make is
local

do

modem POSIX_FILE_DESCRIPTOR
term POSIX_TERMIOS

-- assume there is a /dev/imodem device
create modem.open_read_writg/devmodent)

term := modem.terminal

term.flush_input

print ("Input speed ")

print (term.speed_to_baud_ratgerm.input_speedl
print ("%N")

print ("Output speed")

print (term.speed_to_baud_ratgerm.output_spegil
print ("%N")

term.set_input_spee(B960Q
term.set_output_speedB960Q
term.set_receivéTrue)
term.set_echo_inpufFalse
term.set_echo_new_lin@-alse
term.set_input_contro(True)
term.apply_flush

-- expect modem to echo commands
modem.write_string"AT%N")
modem.read_strind64)

print ("Command ")

print (modem.last_string
modem.read_strind64)

print ("Responsdexpect ok ")

print (modem.last_string
modem.write_string"ATI0O%N")

28 Writing CGI programs

modem.read_strind64)
print ("Command ")
print (modem.last_string
modem.read_strind64)
print ("Response")
print (modem.last_string
modem.close

end

end

*

POSIX_BASE

|
- —»(POSIX_TERMIOS

Figure 4.2 BON diagram of talking to a modem.

POSIX_FILE_DESCRIP

4.5 Writing CGI programs

Although writing acGl program doesn't really belong twsix, they still written often, so | decided
to include a few classes to make this easier. And of course, they build upon the staodesrd
classes.

You just inherit fromPOSIX_CGland start calling its features.
class EX_CGI

inherit
POSIX_CGI
rename
make as make_cgi
end

creation

make

More advanced Posix examples 29

feature

make is
do
make_cqgi

content_text

doctype
b_html

b_head
title ("EPosix CGI exampl®.
e_head

b_body

p ("Hello World:)

add_data("<p>you can use yourb>owr tags</p>")
b_p

add_data("or use any tag by usin9

ep

start_tag ("table")
set_attribute("border’, Void)
set_attribute("cols', "3")
start_tag ("tr")

start_tag ("td")
add_data("start_tagd)
stop_tag

start_tag ("td")
add_data("stop_tad)
stop_tag

stop_tag

stop_tag

e_body
e_html

end

end

Itis important not to mix writing to stdout with the features you inherit fie@SIX_CGIPOSIX_CGlI
does some caching, so after a tag is starteB®®%IX_CGl.start_tagd is not yet written to standard
output. If you want to write something to standard output, usétB81X_CGl.add_datgeature.

30 Logging messages and errors

4.6 Logging messages and errors

Althoughprosixdoesn’t have logging facilities, the Single Unix Specification does. This specifica-
tion requires the presence of thygslogd daemon for centralizes logging facilities. The following
example shows you to write messages to this daemon

class EX_SYSLOG

inherit
SUS_SYSLOG
rename
make as make_syslog
end
creation
make
feature
make is
do
make_syslog“test’, LOG_ODELAY+ LOG_PID, LOG_USER
debug_dump("this is a debug messafe
info ("this is an informational message
warning ("this is a warning)
error ("this is an error messagge
close
end
end

Make sure there is just a singlJS_SYSLOG@Gass in your system. It doesn’t make sense to open
a connection to the logging daemon twice.

4.7 More examples

If you are looking for more examples, you might take a look at the classes teshe_suite
directory. These classes should demonstrate and test almost every feature availablosixhe
classes.

Standard C examples

If you don't have access to RosIX compatible system, you can use the underlying Standard C
classes. Standard C is quite restricted in certain respects: you cannot change directories for ex-
ample. On the other hand, this library gives you access to all Standard C routines, so you can use
what'’s there and write an extremely portable program.

All Standard C classes start wisTDC_. They are:

1. STDC_TEXT_FILEaccess text files.

2. STDC_BINARY_FILEaccess binary files.

3. STC_TEMPORARY_FILEreate a temporary file, a file that is removed when it is closed or
when the program terminates.

4., STDC_CONSTANTSccess Standard C constants like error codes and such.

5. STDC_DYNAMIC_MEMORMllocate dynamic memory.

6. STDC_ENV_VARaccess environment variables.

7. STDC_FILE_SYSTEMilelete and rename files.

8. STDC_SHELL_COMMANIDpass an arbitrary command to the native shell.

9. STDC_SYSTEMaccess information about the system the program is running on.

10.STDC_CURRENT_PROCES®cess to current process related information like its standard
input, output and error streams.
11. STDC_TIME access current time. Also can format a given time in various formats.

5.1 Allocating memory

You can dynamically allocate memory wiirDC_DYNAMIC_MEMORWhich works just like
POSIX_DYNAMIC_MEMORY

class EX_MEM2
creation

make
feature

make is

local
mem STDC_DYNAMIC MEMORY

32 Accessing environment variables

byte INTEGER

do
create mem.allocate_and_cleaf128
mem.poke_byt€2, 57)
byte := mem.peek_byt€?)
mem.resizg256)
mem.deallocate

end

end

With the featur&sTDC_DYNAMIC_MEMORY .allocate_and_cleamory is allocated and cleared
to all zeros.

5.2 Accessing environment variables

5.3 Working with streams

Working with text files is equal to theosix classes, only you use tisac prefix.
class EX_FILE3

creation
make
feature
make is
local
file: STDC_TEXT_FILE
do
create file.open_read("/etdgroup’)
from
until
file.eof
loop
file.read_string(256)
print (file.last_string
end
file.close
end
end

Its BON diagram, see figure? is therefore quite equal to throsixone, see figur@?.

Standard C examples 33

p—

Figure 5.1 BON diagram of opening a Standard C text file.

5.4 Working with the file system

Standard C doesn’t offer much for file systems. You can only delete and rename files.
class EX_DIR5

inherit

STDC_FILE_SYSTEM
rename
make as make_file_system
end

creation
make
feature

make is
do
make_file_system
rename_to("qqtest.abc.tmp "qgtest.xyz.tnip
remove_file("qqgtest.xyz.tmp
end

end
The BON diagram is shown ifigure 5.2

34

Working with the file system

Figure 5.2 BON diagram of deleting and
renaming files with Standard C.

Accessing C headers

This chapter explains the conventions thaasix uses to access the C-headers.

6.1 Making C Headers available to Eiffel

The most portable and safest header translation comes when a C function is not called verba-
tim, but instead a translation function is used. For example to make the Standard C function
fopen available within Eiffel a new header file is created which lists an Eiffel compatible way to
call this routine:

#include "eiffel.h"

#include <stdio.h>

EIF_POINTER posix_fopen(EIF_POINTER filename, EIF_POINTER mode);

Instead of using C types, we use Eiffel types here, which are made available by indiftéhg
h.

The corresponding C file contains the following implementation:
#include "my_new_header.h"

EIF_POINTER posix_fopen(EIF_POINTER filename, EIF_POINTER mode)

{
return ((EIF_POINTER) fopen (filename, mode));

}

It simply calls the original function, returning the result. Type conversion between Eiffel and C
types shouldn’t pose problems this way.

To be able to call this function from Eiffel, axternal feature needs to be written. For example:
class HEADER_STDIO

feature {NONE -- C binding for stream functions

posix_fopen(path, a_mode POINTER: POINTER s
-- Opens a stream
require
valid_mode a_mode/= default_pointer
external "C"
end

36 Distinction between Standard C anebsix headers

end

Of course, the Eiffel function can have all Design By Contract features Eiffel programmers are
accustomed too.

To recapitulate: every header that is to be translated, needs:

1. anew header file, and
2. acorresponding C file, and
3. an Eiffel class.

For example to translatestdio.h> a header file likesiffel _stdio.h and a C fileeiffel
_stdio.c is needed. The Eiffel class could betirader _stdio.e

6.2 Distinction between Standard C amibsix headers

However, Posix sometimes defines extensions to existing Standard C headers. Simply using a
translation header file likeiffel ~ _stdio.h will not work for pure Standard C Eiffel programs,
as it can includeosix specific extensions that might simply not be available on a given platform.

Therefore, erosix divides the C headers in several groups:

The Standard C headers.

Theposix headers.

The Single Unix Specification headers.

Microsoft Windows headers (as far as they defiasixfunctions, this library does not translate
Microsoft Windows specific functions).

PwONPE

Every group gets its own translation header with its own prefix. A translated header has a prefix, an
underscore and next the original header name. The Standard C translatstdiofh> is done

in c_stdio.h andc_stdio.c . Theposixextensions to this header are availablgistdio.
handp_stdio.c

The corresponding Eiffel class follows similar conventions. It has the group’s prefix, next the
string ‘API’, an underscore and next the name of the header. Scstdio.h> functions are
made available iICAPI_STDIO

In table 6.1all the groups with there translation header prefix and Eiffel class prefix are listed. See
also the directory structure figure 6.1

6.3 C translation details

This translation wants to do as less as possible at the C level. It attempts to just make available the
C constants and C functions and do the actual work in Eiffel.

A few details:

1. Constants, C macro definitions, are exported in the header file with the prefix ‘const_’" and next
the macro name. The Eiffel API class exports these constants with the original, uppercased
name.

2. Struct members are exported with getter and setter functions. The get function has the prefix
‘posix’, an underscore, the struct name, an underscore and as last the member name. The

Accessing C headers 37

set function has the prefix ‘posix’, an underscore, ‘set’, an underscore, the struct name, an
underscore and as last the member name.

i
@
B SR eposix

| i Cadoc
- Cbase
- [C3 capi
- (3 papi
- [C3 posix
- L3 sap
B &3 spec
C3ise
i Cse

L O wincows
- 23 standardc
- (03 support
- [C3 supportc
- CIsus
- 23 wapi
- C@windows
- C3test_suite
- (23 util

Figure 6.1 e-Posixdirectory structure

Group directory header prefix| class prefix
Standard C src/capi c CAPI
POSIX src/[api p PAPI
Single Unix Specification| src/sapi s SAPI
Windows src/wapi W WAPI

Table 6.1 hai

Posix function to Eiffel class mapping list

The following table defines exactly where a given Posix function is used in a Eiffel class mapping.
The table is sorted in alphabetic order. Note that when a STDC_ class is listed, the feature is also
available in the corresponding POSIX_ class.

Function Header Class Comment
abort <stdlib.h> STDC_CURRENT_PROCESS.abort

access <unistd.h> POSIX_FILE_SYSTEM.is_accessible

alarm <unistd.h> POSIX_TIMED_COMMAND

asctime <time.h> STDC_TIME.default_format

atexit <stdlib.h> probably not applicable.
calloc <stdlib.h> STDC _DYNAMIC_MEMORY .allocate_and_clear

cfgetispeed <termios.h>

cfgetospeed <termios.h>

cfsetispeed <termios.h>

cfsetospeed <termios.h>

chdir <unistd.h> POSIX_FILE_SYSTEM.change_directory

chmod <sys/stat.h> POSIX_FILE_SYSTEM.change_mode

chown <unistd.h> POSIX_PERMISSIONS_PATH.apply_owner_and_group

clearerr <stdio.h> STDC_FILE.clear_error

clock <time.h>

close <unistd.h> POSIX_FILE_DESCRIPTOR.close

closedir <dirent.h> POSIX_DIRECTORY

creat <fcentl.h> POSIX_FILE_DESCRIPTOR.create_read_write

ctermid <unistd.h>

ctime <time.h>

cuserid <stdio.h> seegetlogin
difftime <time.h> STDC_TIME

dup <unistd.h> POSIX_FILE_DESCRIPTOR.make_as_duplicate

dup2 <unistd.h> POSIX_FILE_DESCRIPTOR.make_as_duplicate

execl <unistd.h> Seeexecvp .
execle <unistd.h> Seeexecvp .
execlp <unistd.h> Seeexecvp .
execv <unistd.h> Seeexecvp .
execve <unistd.h> Seeexecvp .
execvp <unistd.h> POSIX_EXEC_PROCESS.execute

exit <stdlib.h> STDC_CURRENT_PROCESS.exit

_exit <unistd.h>

fclose <stdio.h> STDC FILE.close

fentl <unistd.h> POSIX_FILE_DESCRIPTOR attempt_loclget_lockset_lock

and others.

Posix function to Eiffel class mapping list 39

fdatasync <unistd.h> POSIX_FILE_DESCRIPTOR.synchronize_data

fdopen <stdio.h> POSIX_FILE.make_from_file_descriptor

feof <stdio.h> STDC_FILE.eof

ferror <stdio.h> STDC_FILE.error

fflush <stdio.h> STDC_FILE.flush

fgetc <stdio.h> STDC_FILE.get_character

fgetpos <stdio.h> STDC_FILE.get_position

fgets <stdio.h> STDC_FILE.get_string

fileno <stdio.h> POSIX_FILE_DESCRIPTOR.make_from_file

fopen <stdio.h> STDC_FILE various open creation fea-
tures.

fork <unistd.h> POSIX_CURRENT_PROCESS.fork

fpathconf <unistd.h>

fprintf <stdio.h> not applicable.

fputc <stdio.h> STDC_FILE.putc

fputs <stdio.h> STDC_FILE.put_string

fread <stdio.h> STDC_FILE.read Alsoread_stringandread_charac

free <stdlib.h> STDC_DYNAMIC_MEMORY .deallocate

freopen <stdio.h> STDC_FILE.reopen

fseek <stdio.h> STDC_FILE.seek Alsoseek_from_current
andseek_from_end

fsetpos <stdio.h> STDC_FILE.set_position

fstat <sys/stat.h> POSIX_STATUS Returned byPOSIX_FILE_DESC
status

fsync <unistd.h> POSIX_FILE_DESCRIPTOR.synchronize

ftell <stdio.h> STDC_FILE.tell

fwrite <stdio.h> STDC_FILE.write

getc <stdioh> Not implemented.

getchar <stdio.h> Not implemented.

getcwd <unistd.h> POSIX_FILE_SYSTEM.current_directory

getegid <unistd.h> POSIX_CURRENT_PROCESS.effective_group_id

getenv <stdlib.h> STDC_ENV_VAR.value

geteuid <unistd.h> POSIX_CURRENT_PROCESS .effective_user_id

getgid <unistd.h> POSIX_CURRENT_PROCESS.real_group_id

getgrgid <grp.h> POSIX_GROUP.make_from_gid

getgrnam <grp.h> POSIX_GROUP.make_from_name

getgroups <unistd.h> POSIX_CURRENT_PROCESS.is_in_group

getlogin <unistd.h> POSIX_CURRENT_PROCESS.login_name

getpgrp <unistd.h> POSIX_CURRENT_PROCESS.process_group_id

getpid <unistd.h> POSIX_CURRENT_PROCESS.pid

getppid <unistd.h> POSIX_CURRENT_PROCESS.parent_pid

getpwnam <pwd.h> POSIX_USER.make_from_name

getpwuid <pwd.h> POSIX_USER.make_from_uid

gets <stdio.h> Not implemented.

getuid <unistd.h> POSIX_CURRENT_PROCESS.real_user_id

gmtime <time.h> STDC_TIME.to_utc

isatty <unistd.h> POSIX_FILE_DESCRIPTOR.is_attached_to_terminal

kill <signal.h> POSIX_PROCESS.kill

link <unistd.h> POSIX_FILE_SYSTEM.link

localeconv <locale.h> STDC_LOCALE_NUMERIC

localtime <time.h> STDC_TIME.to_local

40

Iseek <unistd.h>
malloc <stdlib.h>
mblen <stdlib.h>
mbstowcs <stdlib.h>
mbtowc <stdlib.h>
mkdir <sys/stat.h>
mkfifo <sys/staat.h>
mktime <time.h>
open <fcntl.h>
opendir <dirent.h>
pathconf <unistd.h>
pause <unistd.h>
perror <stdio.h>
pipe <unistd.h>
printf <stdio.h>
putc <stdio.h>
putchar <stdio.h>
puts <stdio.h>
raise <signal.h>
rand <stdlib.h>
read <unistd.h>
readdir <dirent.h>
realloc <stdlib.h>
remove <stdio.h>
rename <unistd.h>
rewind <stdio.h>
rewinddir <dirent.h>
rmdir <unistd.h>
scanf <stdio.h>
setbuf <stdio.h>
setgid <unistd.h>
setlocale <locale.h>
setpgid <unistd.h>
setsid <unistd.h>
setuid <unistd.h>
setvbuf <stdio.h>
sigaction <signal.h>
sigaddset <signal.h>
sigdelset <signal.h>
sigemptyset <signal.h>
sigfillset <signal.h>
sigismember <signal.h>
signal <signal.h>
sigpending <signal.h>
sigprocmask <signal.h>
sigsuspend <signal.h>
sleep <unistd.h>
sprintf <stdio.h>

POSIX_FILE_DESCRIPTOR.seek

STDC_DYNAMIC_MEMORY .allocate

POSIX_FILE_SYSTEM.make_directory
POSIX_FILE_SYSTEM.make_fifo
STDC_TIME.set_date_time
POSIX_FILE_DESCRIPTOR.open

POSIX_DIRECTORY
POSIX_DIRECTORY.max_filename_length
POSIX_CURRENT_PROCESS.pause

POSIX_PIPE.make

POSIX_FILE_DESCRIPTOR.read
POSIX_DIRECTORY
STDC_DYNAMIC_MEMORY .resize
POSIX_FILE_SYSTEM.remove_file
POSIX_FILE_SYSTEM.rename_to
STDC_FILE.rewind

POSIX_DIRECTORY
POSIX_FILE_SYSTEM.remove_directory

STDC_FILE.set_buffer
POSIX_CURRENT_PROCESS.set_group_id
STDC_CURRENT_PROCESS.set_locale

PAPI_UNISTD.posix_setsid
PAPI_UNISTD.posix_setsid
POSIX_CURRENT_PROCESS.set_user_id
STDC_FILE.set_no_buffering

POSIX_SIGNAL

POSIX_CURRENT_PROCESS.sleep

Alsoseek from_current
andseek_from_end

Alsoset_datandset_time
Alsoopen_reagdopen_read_write

andopen_write

not applicable.

not applicable.

Also restore_group_id
Also set_native_locale
andset_native_time

Also restore_user_id
Also set_full_buffering
andset_line_buffering

Not applicable.

Posix function to Eiffel class mapping list

41

srand <stdlib.h>
sscanf <stdio.h>
stat <sys/stat.h>
strftime <time.h>
sysconf <unistd.h>
system <stdlib.h>
tcdrain <unistd.h>
tcflow <unistd.h>
tcflush <unistd.h>
tcgetattr <unistd.h>
tcgetpgrp <unistd.h>
tcsendbreak <unistd.h>
tcsetattr <unistd.h>
tcsetpgrp <unistd.h>
time <time.h>
times <times.h>
tmpfile <stdio.h>
tmpnam <stdio.h>
ttyname <unistd.h>
tzset <time.h>
umask <sys/stat.h>
uname <sys/utsname.h>
ungetc <stdio.h>
unlink <unistd.h>
utime <utime.h>
viprintf <stdio.h>
vprintf <stdio.h>
vsprint <stdio.h>
wait <sys/wait.h>
waitpid <sys/wait.h>
wcstombs <stdlib.h>
wctomb <stdlib.h>
write <unistd.h>

POSIX_STATUS
STDC_TIME.format
POSIX_SYSTEM
STDC_SHELL_COMMAND

POSIX_TERMIOS.make

POSIX_TERMIOS.apply_now
STDC_TIME.make_from_unix_time

STDC_TEMPORARY_FILE.make
STDC_FILE_SYSTEM.temporary_file_name
POSIX_FILE_DESCRIPTOR.ttyname

POSIX_SYSTEM
STDC_FILE.ungetc
POSIX_FILE_SYSTEM.unlink
POSIX_FILE_SYSTEM.utime

POSIX_CURRENT_PROCESS.wait
POSIX_FORK_ROOT.wait_pid

POSIX_FILE_DESCRIPTOR.write

Applicable??
Not applicable.

Alsoapply_drainandapply_flush

Various queries.

See also itsouchmethod.
Not applicable.
Not applicable.
Not applicable.

Above table containsosix 1003.1 functions. Most functions frorpsix 1003.1b still have to be

added.
Missing:

ctime
fprintf
fscanf
pipe
umask
vfprintf
sprintf

stdio: no getchar, printf, putchar, scanf, vprintf (makes sense??)

No function fgetc, but only getc. Problem? Also export fgetc?

Some signal functions also skipped for the moment.

No math/string functions.

42

Not <ctype.h> and<setjmp.h> and<stdarg.h>
Not type conversion functions.

Not wide character functions.

Short (flat) listing of Standard C classes

B.1 STDC_BASE

class interface STDC_BASE
feature(s) from STDC_BASE

-- errno

errno. STDC_ERRNO
feature(s) from STDC_BASE

-- exceptions

raise_posix_error

safe_call (res INTEGER

-- raise an exception when value = -1

end of STDC_BASE

44

STDC_CONSTANTS

B.2 STDC_CONSTANTS

class interface STDC_CONSTANTS
feature(s) from STDC_CONSTANTS
-- error codes
EDOM: INTEGER
-- Math argument out of domain of function
ERANGE INTEGER
-- Math result not representable
feature(s) from STDC_CONSTANTS
-- Signals
SIGABRT INTEGER
SIGTERM INTEGER
feature(s) from STDC_CONSTANTS
-- category constants
LC_CTYPE INTEGER
LC_NUMERIC INTEGER
LC_TIME INTEGER
LC_COLLATE INTEGER
LC_MONETARY INTEGER
LC_ALL INTEGER
end of STDC_CONSTANTS

Short (flat) listing of Standard C classes

45

B.3 STDC_CURRENT_PROCESS

class interface STDC_CURRENT_PROCESS
feature(s) from STDC_CURRENT_PROCESS
-- my stdandard input/output/error
stdin STDC_TEXT_FILE
stdout STDC_TEXT_FILE
stderr. STDC_TEXT_FILE
feature(s) from STDC_CURRENT_PROCESS
-- global locale
locale STRING
-- return current locale
numeric_format STDC_LOCALE_NUMERIC
-- various information for formatting numbers and monetary
-- quantities
set_locale(category INTEGER new_locale STRING
-- set given locale tonew_locale
set_c_locale
-- set locale to the Standard C locale (the default)
set_native_decimal_point
-- set the decimal point character
set_native_locale
-- set entire locale to the natives setting
set_native_time
-- set time display to the natives setting
end of STDC_CURRENT_PROCESS

46 STDC_DYNAMIC_MEMORY

B.4 STDC_DYNAMIC_MEMORY

class interface STDC_DYNAMIC_MEMORY
creation
allocate (a_size INTEGER
-- allocate memory ofa_sizebytes
require
valid_size a_size> 0;
not_allocated not is_allocated
ensure
successfull_allocatianis_allocated
allocate_and_clear(a_size INTEGER
-- allocate memory ofa_sizebytes, make sure its zeroed out
require
valid_size a_size> 0;
not_allocated not is_allocated
ensure
successfull_allocatianis_allocated
feature(s) from STDC_DYNAMIC _MEMORY
-- public features
allocate (a_size INTEGER
-- allocate memory ofa_sizebytes
require
valid_size a_size> 0;
not_allocated not is_allocated
ensure
successfull_allocatianis_allocated
allocate_and_clear(a_size INTEGER
-- allocate memory ofa_sizebytes, make sure its zeroed out
require
valid_size a_size> 0;
not_allocated not is_allocated
ensure
successfull_allocatianis_allocated
deallocate
-- free the allocated memory now, dont wait for garbage collector.
require
not_deallocated is_allocated
ensure
now_deallocated not is_allocated
resize (new_size INTEGER
-- resize memory tonew_sizebytes. Expanded memory is not
-- guaranteed to be zeroed out.
require
valid_size new_size> 0;
allocated is_allocated
ensure

Short (flat) listing of Standard C classes

47

successfull_allocatianis_allocated
realloc (new_size INTEGER
-- resize memory tanew_sizebytes. Expanded memory is not
-- guaranteed to be zeroed out.
require
valid_size new_size> 0;
allocated is_allocated
ensure
successfull_allocatianis_allocated
feature(s) from STDC_DYNAMIC _MEMORY
-- copy data from somewhere
copy_from(source POINTER a_size INTEGER
-- Copy data fromsource memory may not overlap
require
data_should_fit a_size<= size
feature(s) from STDC_DYNAMIC_MEMORY
-- set/get bytes (8-bit data)
peek_byte(index INTEGER: INTEGER
-- consider memory an array of 8 bit values.
require
valid_index index >= 0 and index < size
ensure
possible_valuesResult>= 0 and Result< 256
poke_byte(index, value INTEGER
require
valid_index index >= 0 and index < size
valid_value value >= 0 and value < 256
feature(s) from STDC_DYNAMIC_MEMORY
-- set/get integers (32-bit data)
peek_integer(index INTEGER: INTEGER
-- consider memory an array of 32 bit values.
require
valid_index index >= 0 and index < size// 4
feature(s) from STDC_DYNAMIC_MEMORY
-- queries
is_allocated BOOLEAN
feature(s) from STDC_DYNAMIC_MEMORY
-- state
ptr: POINTER
-- the actual pointer
size INTEGER
-- in number of bytes
feature(s) from STDC_DYNAMIC _MEMORY
dispose
-- Action to be executed just before garbage collection
-- reclaims an object.
invariant

48 STDC_DYNAMIC_MEMORY

valid_size size >= 0
size_and_ptr_relation(size = 0 implies not is_allocated and size > 0 implies is_allocated
end of STDC_DYNAMIC_MEMORY

Short (flat) listing of Standard C classes 49

B.5 STDC_ENV_VAR

class interface STDC_ENV_VAR
creation
make (a_name STRING
require
valid_name a_name/= Void and then not a_name.is_empty -- a_nantwesnt have to be an exist
feature(s) from STDC_ENV_VAR
make (a_name STRING
require
valid_name a_name/= Void and then not a_name.is_empty -- a_nantwesnt have to be an exist
feature(s) from STDC_ENV_VAR
-- queries
name STRING
value STRING
end of STDC_ENV_VAR

50 STDC_FILE

B.6 STDC_FILE

deferred classinterface STDC_FILE
feature(s) from STDC_FILE
-- creation
create_read_write(path STRING
-- Open file for update (reading and writing). If the file
-- already exists, it is truncated to zero length.
-- SO permissions seem to remain.
create_write (path STRING
-- create new file for writing. If the file already exists,
-- it is truncated to zero length.
-- SO permissions seem to remain.
open (path, a_mode STRING
-- open file in given mode
open_appendpath STRING
-- append to exiting file or create file if it does not exist
open_read(path STRING
-- open file for reading
open_read_write(path STRING
-- open file for reading and writing
feature(s) from STDC_FILE
-- work with existing streams
attach_to_strean{a_stream POINTER a_mode STRING
-- attach toa_stream Will become owner of stream so
-- it will close it when garbage collected.
require
valid_stream a_stream/= Void;
valid_mode a_mode/= Void and then a_mode.count 0 -- a_streamis open
-- a_modeis compatible witha_stream
unattach
-- assume someone else will close this stream
feature(s) from STDC_FILE
-- close
close
ensure
closed not is_open
feature(s) from STDC_FILE
-- reopen
reopen (path, a_mode STRING
-- closes and then opens a stream
require
open is_open --valid_mode: mode is a valid posix mode
ensure
file_stays_openis_open
feature(s) from STDC_FILE
-- control over buffering

Short (flat) listing of Standard C classes

flush
-- Updates this stream
setbuf (buffer. POINTER
-- Determines how the stream will be buffered
-- gives you a fully buffered input and output
-- Not sure: buffer should have at least BUFSIZ bytes?
set_buffer(buffer. POINTER
-- Determines how the stream will be buffered
-- gives you a fully buffered input and output
-- Not sure: buffer should have at least BUFSIZ bytes?
set_full_buffering(buffer. POINTER size INTEGER
-- Determines buffering for a stream
-- give NULL buffer so setvbufwill allocate a buffer
set_line_buffering(buffer. POINTER size INTEGER
-- Determines buffering for a stream
-- give NULL buffer so setvbufwill allocate a buffer
set_no_buffering
-- Turns off buffering
feature(s) from STDC_FILE
-- read, C like
last_byte INTEGER
-- last read character afet _character
-- can be negative, so is more a last_shortint or so!
getc
-- Reads a C unsigned char and converts it to an integer,
- the result is left inlast_byte
- This function probably can be used to read a single
-- byte
ensure
eof set last_byte= const_ EOFimplies eof
get_character
-- Reads a C unsigned char and converts it to an integer,
-- the result is left inlast_byte
-- This function probably can be used to read a single
-- byte
ensure
eof set last_byte= const_ EOFimplies eof
gets (bytes INTEGER
-- Reads at most one less thagtes characters.
-- No additional characters are read after a newline character
-- or after end-of-file. If a newline character is read, it
-- is returned too.
-- Result is placed inlast_string
get_string (bytes INTEGER
-- Reads at most one less thagtes characters.
-- No additional characters are read after a newline character
-- or after end-of-file. If a newline character is read, it

52 STDC_FILE

-- is returned too.
-- Result is placed irlast_string
featurds) from STDC_FILE
-- read, Eiffel like
last read INTEGER
-- last read bytes by some read XXXX or get string call
last_character CHARACTER
-- last character read by getc
last_string STRING
-- last string read by get_string
read (buf: POINTER bytes INTEGER
read_character
-- read a single character and dast_character
-- if end-of-file encounteredeof is True
read_string (bytes INTEGER
-- Read at mosh characters, a value more expected by
-- programmers not used to strings with a trailing byte.
-- result is placed inlast_string
-- last_string includes the newline character!
feature(s) from STDC_FILE
-- write
last_written INTEGER
-- last written bytes by some write_ XXXX call
put (any. ANY)
-- write class as string
putc (c: INTEGER
-- write a single character
ensure
need_flush_seteed flush
puts (s. STRING
-- write a string
require
valid_string s /= Void
ensure
need_flush_seteed flush
put_string (s: STRING
-- write a string
require
valid_string s /= Void
ensure
need_flush_setneed flush
write_string (s STRING
-- write a string
require
valid_string s /= Void
ensure
need_flush_setneed_flush

Short (flat) listing of Standard C classes 53

ungetc (c: INTEGER
-- pushesc back to the stream
- note that file positioning functions discard any
-- pushed-back characters
write (buf: POINTER bytes INTEGER
- write bytes bytes from buf
feature(s) from STDC_FILE
-- file position
getpos STDC_FILE_POSITION
-- get the current position, usget positionto return to
-- this saved position
feature(s) from STDC_FILE
-- file position
get_position STDC_FILE_POSITION
-- get the current position, usget positionto return to
-- this saved position
rewind
-- Sets the file position to the beginning of the file
ensure
not_eof not eof;
no_need_to_flushnot need_flush
seek (offset INTEGER
-- set file position to given absoluteffset
require
valid_offset offset>= 0
ensure
not_eof not eof;
no_need_to_flushnot need_flush
seek_from_curren{offset INTEGER
-- set file position relative to current position
ensure
not_eof not eof;
no_need_to_flushnot need_flush
seek_from_endoffset INTEGER
-- set file position relative to end of file
require
valid_offset offset <= 0
ensure
not_eof not eof;
no_need_to_flushnot need_flush
setpos(a_position STDC_FILE_POSITION
-- set the current position
require
valid_position a_position/= Void
ensure
not_eof not eof;
no_need_to flushnot need_flush

54

STDC_FILE

set_position(a_position STDC_FILE_POSITION
-- set the current position
require
valid_position a_position/= Void
ensure
not_eof not eof;
no_need_to_flushnot need_flush
tell: INTEGER
-- The current position
feature(s) from STDC_FILE
-- other
clearerr
-- Clears end-of-file and error indicators for a stream
featurds) from STDC_FILE
-- other
clear_error
-- Clears end-of-file and error indicators for a stream
featurds) from STDC_FILE
-- queries
eof: BOOLEAN
-- True if eof encountered by getc or,
-- if the end-of-file indicator is set
error: BOOLEAN
-- True if and only if the error indicator is set
filename STRING
-- the filename of this file
is_open BOOLEAN
mode STRING
-- mode in which the file is opened/created
invariant
path_should_existportable_path/= \oid,
last_string_valid last_string /= Void,;
gets_buf_valid gets_buf/= Void;
end of deferred STDC_FILE

Short (flat) listing of Standard C classes

B.7 STDC_FILE_SYSTEM

class interface STDC_FILE_SYSTEM
creation
make
feature(s) from STDC_FILE_SYSTEM
-- rename files/directories, remove files/directories
remove_file(a_path STRING
-- Removes a file from a directory
-- its not an error if this file does not exist

require

valid_path a path/= Void and then not a_path.is_empty
require else

a_path /= Void

rename_to(current_path, new_pathSTRING
-- Renames a file or directory
require
valid_current current_path/= Void and then not current_path.is_empty
valid_new new_path/= Void and then not new_path.is_empty
feature(s) from STDC_FILE_SYSTEM
-- accessibility of files
is_modifiable(a_path STRING: BOOLEAN
-- tests if file is readable and writable by this program
-- does this by attemting to opea path file read/write
require
valid_path a_path /= Void and then not a_path.is_empty
is_readable(a_path STRING: BOOLEAN
-- tests if file is readable by this program
-- does this by attemting to opea path file read-only
require
valid_path a path/= Void and then not a_path.is_empty
feature(s) from STDC_FILE_SYSTEM
-- temporary names
temporary_file_nameSTRING
-- Generates a string that is a valid non-existing file name
ensure
valid_name Result/= Void and then not Result.is_empty
feature(s) from STDC_FILE_SYSTEM
-- temporary names
tmpnam STRING

-- Generates a string that is a valid non-existing file name
ensure

valid_name Result/= Void and then not Result.is_empty
invariant

path_should_existportable_path/= Void,
end of STDC_FILE_SYSTEM

56 STDC_SYSTEM

B.8 STDC_SYSTEM

class interface STDC_SYSTEM
feature(s) from STDC_SYSTEM
-- run-time determined queries
is_shell_available BOOLEAN
-- Return True if command interpreter is available
feature(s) from STDC_SYSTEM
-- compile time determined queries
clocks_per_secondNTEGER
-- number per second of the value returned by tgheck function
end of STDC_SYSTEM

Short (flat) listing of Standard C classes

57

B.9 STDC_TIME

[file stc_time.tex does not exist]

Short (flat) listing of POSIX classes

C.1 POSIX_ASYNC_I0_REQUEST

classinterface POSIX_ASYNC_|IO0_REQUEST
creation

make (a_fd POSIX_FILE_DESCRIPTOR
require
valid_fd a_fd /= Void and then a_fd.is_open
feature(s) from POSIX_ASYNC_IO_REQUEST
-- creation
make (a_fd¢ POSIX_FILE_DESCRIPTOR
require
valid_fd a_fd /= Void and then a_fd.is_open
feature(s) from POSIX_ASYNC IO _REQUEST
-- request properties
buffer. POINTER
-- Location for read or written data
count INTEGER
-- number of bytes to read/write
offset INTEGER
-- file offset
feature(s) from POSIX_ASYNC_IO_REQUEST
-- set request properties
set_buffer(a_buffer POINTER
-- set buffer to read/write from
require
nothing_pending not is_pending
set_count(a_count INTEGER
-- set number of bytes to read/write
require
nothing_pending not is_pending
set_offset(a_offset INTEGER
require
nothing_pending not is_pending
feature(s) from POSIX_ASYNC |IO_REQUEST
-- basic read/write requests
read

Short (flat) listing of POSIX classes

59

-- execute async read request
require
is_open fd.is_open
nothing_pending not is_pending
write
-- execute async write request
require
is_open fd.is_open
nothing_pending not is_pending
feature(s) from POSIX_ASYNC_I0_REQUEST
-- Eiffel friendly reads and writes
last_string STRING
-- attempt to return buffer as an Eiffel string
-- buffer should have a terminating byte!
read_string
require
is_open fd.is_open
nothing_pending not is_pending
write_string (text STRING
require
is_open fd.is_open
nothing_pending not is_pending
feature(s) from POSIX_ASYNC_IO0_REQUEST
-- other operations
cancel_failed BOOLEAN
-- set by cancel, True if cancel request failed, probably
-- because operation was already performed
cancel
-- cancel request
synchronize
-- force all i/o operations queued for the file descriptor
- associated with this request to the synchronous state.
- Function returns when the request has been initiated or
-- queued to the file or device (even when the data cannot be
-- synchronized immediately)
synchronize_data
-- force all i/o operations queued for the file descriptor
- associated with this request to the synchronous state.
- Function returns when the request has been initiated or
-- queued to the file or device (even when the data cannot be
-- synchronized immediately)
wait_for
-- suspend process, until request completed
feature(s) from POSIX_ASYNC_IO_REQUEST
-- state
fd: POSIX_FILE_DESCRIPTOR
is_pending BOOLEAN

60 POSIX_ASYNC_IO_REQUEST

-- True if io request is still pending
return_status INTEGER
-- return status of asynchronous i/o operation, equal to what
-- the synchronous read, write of fsync would have returned
require
nothing_pending not is_pending
invariant
valid_aioch aiocb /= Void,
end of POSIX_ASYNC_IO_REQUEST

Short (flat) listing of POSIX classes

61

C.2 POSIX_BASE

class interface POSIX_BASE
end of POSIX BASE

62 POSIX_CGI

C.3 POSIX_CGl

class interface POSIX_CGl
feature(s) from POSIX_ CGI
-- overrule some xml stuff
extend (stuff: STRING
-- add anything to the currentml string, youre on your own here!
feature(s) from POSIX CGI
-- cgi header
content_text
doctype
feature(s) from POSIX CGI
-- page
b_html
-- start html page
e_html
require
valid_stop is_started"html")
feature(s) from POSIX_CGI
-- header
b_head
e _head
require
valid_stop is_started"head)
title (a_text STRING
feature(s) from POSIX_CGI
-- body
b_body
e_body
require
valid_stop is_started"body")

e_p
require
valid_stop is_started"p")

p (par: STRING
invariant

-- dont attempt to check this invariant

-- valid_pid: pid >= 0

same_sizeattributes.count= values.count
end of POSIX_CGI

Short (flat) listing of POSIX classes

63

C.4 POSIX_CHILD_PROCESS

deferred classinterface POSIX_CHILD_PROCESS
feature(s) from POSIX_CHILD_ PROCESS
-- childs pid
pid: INTEGER
-- the process identifier
require
valid_pid is_pid_valid
ensure
valid_pid Result> 0
is_pid_valid BOOLEAN
-- return True if this object refers to a child process, so
-- it has an id
feature(s) from POSIX _CHILD_ PROCESS
-- actions that parent may execute
wait_for (suspend BOOLEAN
-- wait for this process to terminate. Huspendthen we
-- wait until the information about this process is available,
-- else we return immediately. Check the terminated property
-- to see if this child is really terminated.
require
pid_refers_to_child is_pid_valid
not_terminated not is_terminated
end of deferred POSIX_CHILD_PROCESS

64 POSIX_CONSTANTS

C.5 POSIX_CONSTANTS

class interface POSIX_CONSTANTS
feature(s) from POSIX_CONSTANTS
-- error codes
EAGAIN INTEGER
EBADF. INTEGER
EINPROGRESSINTEGER
EINTR INTEGER
ENOSYSINTEGER
feature(s) from POSIX_CONSTANTS
-- standard file numbers
STDERR_FILENOINTEGER
STDIN_FILENO INTEGER
STDOUT_FILENO INTEGER
feature(s) from POSIX_CONSTANTS
-- posix permission symbolic constants
S _IRUSR INTEGER
feature(s) from POSIX_CONSTANTS
-- posix permission symbolic constants
S _IREAD INTEGER
S_IWUSR INTEGER
S_IWRITE INTEGER
S _IXUSR INTEGER
S_IEXEC INTEGER
S_IRGRP INTEGER
S_IWGRP INTEGER
S _IXGRP INTEGER
S_IROTH INTEGER
S_IWOTH INTEGER
S IXOTH INTEGER
S_ISUID INTEGER
S_ISGID INTEGER
feature(s) from POSIX_CONSTANTS
-- Posix signal constants
SA_NOCLDSTOPRINTEGER
SIGHUPR. INTEGER
-- hangup detected on controlling terminal or death of
-- controlling process
SIGNAL_HANGUP INTEGER
-- hangup detected on controlling terminal or death of
-- controlling process
SIGALRM INTEGER
-- Timeout signal, such as initiated by the alarm() function
-- or see POSIX_TIMED_COMMAND
SIGNAL_ALARM INTEGER
-- Timeout signal, such as initiated by the alarm() function

Short (flat) listing of POSIX classes

65

-- or see POSIX_TIMED_COMMAND
SIGCHLD INTEGER
-- Child process terminated or stopped
SIGNAL_CHILD INTEGER
-- Child process terminated or stopped
SIGKILL: INTEGER
-- Termination signal (cannot be caught or ignored)
SIGNAL_KILL INTEGER
-- Termination signal (cannot be caught or ignored)
SIGPIPE INTEGER
-- Write on a pipe with no readers
SIGNAL_PIPE INTEGER
-- Write on a pipe with no readers
SIGQUIT: INTEGER
-- Interactive termination signal
SIGNAL_QUIT INTEGER
-- Interactive termination signal
SIGCONT INTEGER
-- Continue if stopped
SIGNAL_CONTINUE INTEGER
-- Continue if stopped
SIGSTOP INTEGER
-- Stop signal, cannot be caught or ignored
SIGNAL_STOPINTEGER
-- Stop signal, cannot be caught or ignored
SIGTSTP INTEGER
-- Interactive stop signal
SIGNAL_INTERACTIVE_STORNTEGER
-- Interactive stop signal
SIGTTIN INTEGER
-- Read from control terminal attempted by a member of a
-- background process group
SIGNAL_TERMINAL_IN INTEGER
-- Read from control terminal attempted by a member of a
-- background process group
SIGTTOU INTEGER
-- Write to control terminal attempted by a member of a
-- background process group
SIGNAL_TERMINAL_OUTINTEGER
-- Write to control terminal attempted by a member of a
-- background process group
feature(s) from POSIX _CONSTANTS
-- terminal i/o local mode flags
ISIG: INTEGER
ICANON: INTEGER
ECHO. INTEGER
-- If set, input characters are echoed back to the terminal

66

POSIX_CONSTANTS

feature(s) from POSIX_CONSTANTS
-- set terminal settings options

feature(s) from POSIX_CONSTANTS
-- semaphore constants
SEM_VALUE_MAXINTEGER

-- Valid Maximum initial value for a semaphore
feature(s) from POSIX_CONSTANTS
-- terminal baud rates

ECHOE INTEGER
ECHOK: INTEGER
ECHONL INTEGER
NOFLSH INTEGER
TOSTOP INTEGER
IEXTEN INTEGER

Tcsanow INTEGER
Tcsadrain INTEGER
Tcsaflush INTEGER

BO: INTEGER

B50 INTEGER

B75 INTEGER
B11Q INTEGER
B134 INTEGER
B15Q INTEGER
B20Q INTEGER
B30Q INTEGER
B60Q INTEGER
B1200 INTEGER
B1800 INTEGER
B2400 INTEGER
B4800 INTEGER
B9600 INTEGER
B19200 INTEGER
B38400 INTEGER
B57600 INTEGER
B115200 INTEGER
B230400 INTEGER
B460800 INTEGER
B500000 INTEGER
B576000 INTEGER
B921600 INTEGER
B1000000 INTEGER
B1152000 INTEGER
B1500000 INTEGER
B2000000 INTEGER
B2500000 INTEGER
B3000000 INTEGER
B3500000 INTEGER

Short (flat) listing of POSIX classes

67

B4000000 INTEGER
feature(s) from POSIX_CONSTANTS
-- terminal /0 control mode constants
CSIZE INTEGER
CS5 INTEGER
CS6 INTEGER
CS7 INTEGER
CS8 INTEGER
CSTOPB INTEGER
CREAD INTEGER
PARENB INTEGER
PARODD INTEGER
HUPCL: INTEGER
CLOCAL INTEGER
feature(s) from POSIX_CONSTANTS
-- terminal i/o input control flags
IGNBRK: INTEGER
BRKINT: INTEGER
IGNPAR INTEGER
PARMRK INTEGER
INPCK: INTEGER
ISTRIPR INTEGER
INLCR INTEGER
IGNCR INTEGER
ICRNL INTEGER
IXON: INTEGER
IXOFF: INTEGER
feature(s) from POSIX_CONSTANTS
-- category constants
LC_MESSAGESINTEGER
end of POSIX_CONSTANTS

68 POSIX_CURRENT_PROCESS

C.6 POSIX_CURRENT PROCESS

class interface POSIX_CURRENT_PROCESS
feature(s) from POSIX _CURRENT_PROCESS
-- my stdandard input/output/error
stdin POSIX_TEXT_FILE
stdout POSIX_TEXT_FILE
stderr. POSIX_TEXT_FILE
feature(s) from POSIX_CURRENT_PROCESS
-- every process also has standard file descriptors
fd_stdin POSIX_FILE_DESCRIPTOR
fd_stdout POSIX_FILE_DESCRIPTOR
fd_stderr POSIX_FILE_DESCRIPTOR
feature(s) from POSIX _CURRENT_PROCESS
-- POSIX locale specifics
set_native_messages
-- Select native language as the language in which messages
-- are displayed
end of POSIX_CURRENT_PROCESS

Short (flat) listing of POSIX classes

69

C.7 POSIX_DAEMON

deferred classinterface POSIX_DAEMON
feature(s) from POSIX _DAEMON
-- daemon specific actions
detach
-- detach from command-line, not very useful if you want to
-- spawn multiple daemons, but you can always pass daemons to
-- the fork routine yourself
end of deferred POSIX_DAEMON

70 POSIX_DIRECTORY

C.8 POSIX_DIRECTORY

class interface POSIX_DIRECTORY
creation
make (a_directory_ name STRING
feature(s) from POSIX_DIRECTORY
-- creation
make (a_directory_ name STRING
feature(s) from POSIX_DIRECTORY
-- access

close
-- close directory entry (save resources now, dont wait for

-- garbage collection). If you call start it will automatically
-- reopen
require
not_closed is_open
ensure
closed not is_open
start
-- start directory traversal
forth
-- go to next entry
require
opened is_open
not_exhaustednot exhausted
item STRING
-- the current entry
feature(s) from POSIX DIRECTORY
-- status report
exhausted BOOLEAN
-- no more entries in this directory
is_empty BOOLEAN
is_first BOOLEAN
-- current item is first entry
is_open BOOLEAN
-- True if directory is ready for traversal
feature(s) from POSIX DIRECTORY
max_filename_lengtiNTEGER
feature(s) from POSIX_DIRECTORY
dispose
-- Action to be executed just before garbage collection
-- reclaims an obiject.
invariant
valid_directory_namedirectory_name/= Void,
end of POSIX_DIRECTORY

Short (flat) listing of POSIX classes 71

C.9 BASE_FILE_DESCRIPTOR

ClassBASE_FILE_DESCRIPTOR the parent class fa?OSIX_FILE_DESCRIPTQR

class interface BASE_FILE_DESCRIPTOR
feature(s) from BASE_FILE_DESCRIPTOR
-- creation
open (a_path STRING flags INTEGER
-- open given file with access given Hlags
require
closed is_closed
open_read(a_path STRING
-- open given file with read-only access
require
closed is_closed
open_write (a_path STRING
require
closed is_closed
open_read_write(a_path STRING
require
closed is_closed
open_truncate(a_path STRING
require
closed is_closed
create_read_write(a_path STRING
-- always create a file, existing or not
-- give read/write permissions to user only
require
closed is_closed
create_with_modda_path STRING flags, mode INTEGER
-- create a file according tflags and with mode access
-- permissions
require
closed is_closed
feature(s) from BASE_FILE_DESCRIPTOR
-- special creation
attach_to_fd(a_fd INTEGER
-- Create file descriptor with value_fd
require
closed is_closed
valid_fd a_fd >= 0 -- a_fd is open
ensure
opened is_open
make_from_file(file: STDC_FILB
-- Create file descriptor from given stream
-- The stream is leading, so this file descriptor will
-- never automatically close when garbage collected, but
-- it will close when closeis called.

72 BASE_FILE_DESCRIPTOR

-- In that case the stream is no longer valid of course,
-- but thats up to you to detect.
require
closed is_closed
valid_file file /= Void and then file.is_open
ensure
open is_open
make_as_duplicat¢another BASE_FILE_DESCRIPTQR
-- On creation, create a duplicate from another file descriptor
-- As normal call, closes its own descriptor first (if open) and
-- duplicates next.
ensure
open is_open
feature(s) from BASE_FILE_DESCRIPTOR
-- close
close
-- we always describe an existing object, however user probably wants
-- to have control about closing a file. And because of garbage
-- collection we cant free the file_descriptor itself.
require
opened is_open
ensure
closed is_closed
unattach
-- unbind from the current file descriptor
ensure
closed not is_open
feature(s) from BASE_FILE_DESCRIPTOR
-- raw read and write
last_read INTEGER
-- last bytes read by read
read (buf: POINTER size INTEGER
-- read data intobuf for size bytes
require
valid_buf. buf /= default_pointer
valid_size size>= 0
write (buf: POINTER size INTEGER
-- write given data
require
valid_buf. buf /= default_pointey
valid_size size>= 0
feature(s) from BASE_FILE_DESCRIPTOR
-- Eiffel like read/write
last_string STRING
-- last read string (includes %N), see POSIX TEXT_FILE.chop
read_string (a_size INTEGER
write_string (s: STRING

Short (flat) listing of POSIX classes 73

feature(s) from BASE_FILE_DESCRIPTOR
-- file position
seek(offset INTEGER
-- set file position to given absoluteffset
require
valid_offset offset>= 0
seek_from_curren{offset INTEGER
-- set file position relative to current position
seek_from_endoffset INTEGER
-- set file position relative to end of file
require
valid_offset offset<= 0
feature(s) from BASE_FILE_DESCRIPTOR
-- queries
isatty,. BOOLEAN
-- return true if handle associated with character device
feature(s) from BASE_FILE_DESCRIPTOR
-- queries
is_attached_to_terminalBOOLEAN
-- return true if handle associated with character device
is_closed BOOLEAN
-- file descriptor is closed?
ensure
in_balance Resultimplies not is_open
is_open BOOLEAN
-- still describes a file descriptor?
ensure
in_balance Resultimplies not is_closed
status POSIX_STATUS
value INTEGER
-- return the value of the file descriptor
require
valid_file_descriptor is_open
feature(s) from BASE_FILE_DESCRIPTOR
-- accessible state
path STRING
invariant
path_should_existportable_path/= Void,
valid_internal_file_descriptorfd >= - 1,
end of BASE_FILE_DESCRIPTOR

74 POSIX_EXEC_PROCESS

C.10 POSIX_EXEC_PROCESS

class interface POSIX_EXEC_PROCESS
creation
make (a_program STRING a_arguments ARRAYSTRING)
make_capture_inpua_program STRING a_arguments ARRAYSTRING)
make_capture_outpufa_program STRING a_arguments ARRAYSTRING)
make_capture_iqa_program STRING a_arguments ARRAYSTRING)
feature(s) from POSIX_EXEC_PROCESS
-- creation
make (a_program STRING a_arguments ARRAYSTRING)
make_capture_inpua_program STRING a_arguments ARRAYSTRING)
make_capture_outpufa_program STRING a_arguments ARRAYSTRING)
make_capture_ida_program STRING a_arguments ARRAYSTRING)
feature(s) from POSIX _EXEC_ PROCESS
-- (re)set arguments
set_argumentga_arguments ARRAYSTRING)
feature(s) from POSIX EXEC PROCESS
-- i/o capturing
capture_input BOOLEAN
-- is input captured on execute?
capture_output BOOLEAN
-- is output captured on execute?
capture_error BOOLEAN
-- is error captured on execute?
set_capture_inpu{on: BOOLEAN
set_capture_outpufon: BOOLEAN
set_capture_errorlon. BOOLEAN
stdin POSIX_TEXT_FILE
stdout POSIX_TEXT_FILE
stderr. POSIX_TEXT_FILE
fd_stdin POSIX_FILE_DESCRIPTOR
fd_stdout POSIX_FILE_DESCRIPTOR
fd_stdert POSIX_FILE_DESCRIPTOR
feature(s) from POSIX _EXEC_ PROCESS
-- execute
exec
-- Executesprogram_name
-- dont forget towait for this process to terminate
feature(s) from POSIX_EXEC_PROCESS
-- execute
execute
-- Executesprogram_name
-- dont forget towait for this process to terminate
feature(s) from POSIX _EXEC_ PROCESS
-- accessible state
program_name POSIX_PATH

Short (flat) listing of POSIX classes

75

-- program to execute
arguments ARRAYSTRING
-- arguments to pass to program
end of POSIX_EXEC_PROCESS

76 POSIX_FILE_DESCRIPTOR

C.11 POSIX_FILE_DESCRIPTOR

class interface POSIX_FILE_DESCRIPTOR
creation
open (a_path STRING flags INTEGER
-- open given file with access given kags
require
closed is_closed
open_read(a_path STRING
-- open given file with read-only access
require
closed is_closed
open_write (a_path STRING
require
closed is_closed
open_read_write(a_path STRING
require
closed is_closed
open_truncate(a_path STRING
require
closed is_closed
create_read_write(a_path STRING
-- always create a file, existing or not
-- give read/write permissions to user only
require
closed is_closed
create_with_modda_path STRING flags, mode INTEGER
-- create a file according tflags and with mode access
-- permissions
require
closed is_closed
make_as_duplicatéanother BASE_FILE_DESCRIPTQR
-- On creation, create a duplicate from another file descriptor
-- As normal call, closes its own descriptor first (if open) and
-- duplicates next.
ensure
open is_open
make_from_file(file: STDC_FILE
-- Create file descriptor from given stream
- The stream is leading, so this file descriptor will
-- never automatically close when garbage collected, but
- it will close when closeis called.
-- In that case the stream is no longer valid of course,
-- but thats up to you to detect.
require
closed is_closed
valid_file file /= Void and then file.is_open

Short (flat) listing of POSIX classes 77

ensure
open is_open
attach_to_fd(a_fd INTEGER
-- Create file descriptor with value_fd
require
closed is_closed
valid fd a fd >= 0 -- a_fd is open
ensure
opened is_open
feature(s) from POSIX_FILE_DESCRIPTOR
-- close
close
-- we always describe an existing object, however user probably wants
-- to have control about closing a file. And because of garbage
-- collection we cant free the file_descriptor itself.
require
opened is_open
ensure
closed is_closed
close_on_execute
-- close this descriptor when forking
feature(s) from POSIX_FILE_DESCRIPTOR
-- synchronisation
synchronize
-- synchronize the state of a file (includes synchronize data)
require
synchronize_valid supports_file_synchronization
feature(s) from POSIX_FILE _DESCRIPTOR
-- synchronisation
fsync
-- synchronize the state of a file (includes synchronize_data)
require
synchronize_valid supports_file_synchronization
synchronize_data
-- synchronize the data of a file
require
synchronize_valid supports_synchronized_io
fdatasync
-- synchronize the data of a file
require
synchronize_valid supports_synchronized_io
feature(s) from POSIX_FILE_DESCRIPTOR
-- locking
get_lock (a_lock POSIX_LOCK: BOOLEAN
-- gets lock information, returns True if a lock is set on
-- the region in a_lock. a_lock is overwritten with that lock
set_lock_failed BOOLEAN

78 POSIX_FILE_DESCRIPTOR

-- Test after set lock if lock did success
attempt_lock(a_lock POSIX LOCHK
-- attempt to set lock, if not possible, set
-- set_lock_failed
set_lock(a_lock POSIX_LOCHK
-- attempt to set lock, wait if necessary
feature(s) from POSIX_FILE_DESCRIPTOR
-- queries
terminat POSIX_TERMIOS
-- terminal settings
require
valid_file_descriptor is_attached_to_terminal
ensure
valid_result Result/= Void
ttyname STRING
-- Terminal path name, or empty if this file descriptor does
-- not refer to a terminal
invariant
path_should_existportable_path/= Void,
valid_internal_file_descriptorfd >= - 1,
end of POSIX_FILE_DESCRIPTOR

Short (flat) listing of POSIX classes 79

C.12 POSIX_FILE_SYSTEM

class interface POSIX_FILE_SYSTEM
creation
make
feature(s) from POSIX _FILE_SYSTEM
-- directory access
change_directory(a_directory STRING
-- Changes the current working directory
feature(s) from POSIX_FILE_SYSTEM
-- directory access
chdir (a_directory STRING
-- Changes the current working directory
current_directory STRING
-- The current directory
getcwd STRING
-- The current directory
pwd STRING
-- The current directory
make_directory(a_directory STRING
-- Makes a directory, only accessible by owner
mkdir (a_directory STRING
-- Makes a directory, only accessible by owner
remove_directory(a_directory STRING
-- Removes a directory
rmdir (a_directory STRING
-- Removes a directory
feature(s) from POSIX_FILE_SYSTEM
-- read/write permissions
chmod (a_path STRING a_mode INTEGER
-- Changes file mode
require
valid_path a_path /= Void and then not a_path.is_empty
feature(s) from POSIX_FILE_SYSTEM
-- read/write permissions
change_modda_path STRING a_mode INTEGER
-- Changes file mode
require
valid_path a_path /= Void and then not a_path.is_empty
permissions(a_path STRING: POSIX_PERMISSIONS
-- return the permissions object (a new one every time!) for
-- the given file
require
valid_path a_path /= Void and then not a_path.is_empty
set_read_only(a_path STRING
-- Make given file read_only
require

80 POSIX_FILE_SYSTEM

valid_path a_path /= Void and then not a_path.is_empty
feature(s) from POSIX_FILE_SYSTEM
-- file statistics
status (a_path STRING: POSIX_STATUS
-- Gets information about a file
require
valid_path a_path /= Void and then not a_path.is_empty
touch (a_path STRING
-- Sets the modification and access timesaopath to the
-- current time of day.
utime (a_path STRING access_time, modification_timOSIX_TIMB
-- Sets file access and modification times
feature(s) from POSIX_FILE_SYSTEM
-- accessibility of files
last_access_resuliNTEGER
-- value of last access test
is_accessiblea_path STRING a_mode INTEGER: BOOLEAN
-- Tests for file accessibility
access(a_path STRING a_mode INTEGER: BOOLEAN
-- Tests for file accessibility
is_existing(a_path STRING: BOOLEAN
-- tests if file does exist, not if it is readable or writable by
-- this program!
-- uses real user ID and real group ID instead of effective ones
is_empty(a_path STRING: BOOLEAN
-- True if file exists and has a size equal to zero.
require
exists is_existinga_path
is_executablgla_path STRING: BOOLEAN
-- tests if file is executable by this program
is_modifiable(a_path STRING: BOOLEAN
-- tests if file is readable and writable by this program
-- uses real user ID and real group ID instead of effective ones
require
valid_path a_path /= Void and then not a_path.is_empty
is_readable(a_path STRING: BOOLEAN
-- tests if file is readable by this program
-- uses real user ID and real group ID instead of effective ones
require
valid_path a_path /= Void and then not a_path.is_empty
is_writable (a_path STRING: BOOLEAN
-- tests if file is writable by this program
-- uses real user ID and real group ID instead of effective ones
feature(s) from POSIX_FILE_SYSTEM
-- further directory access
link (existing, new STRING
-- Creates a hard link to a file

Short (flat) listing of POSIX classes 81

require
different_namesnot existing.is_equghew)
unlink (a_path STRING
-- Removes a directory entry (equal to remove)
-- its not an error if path does not exist
require
valid_path a_path /= Void and then not a_path.is_empty
feature(s) from POSIX_FILE_SYSTEM
-- directory browsing
browse_directory(a_directory STRING: POSIX_DIRECTORY
require
valid_dir: a_directory /= Void and then not a_directory.is_empty
feature(s) from POSIX_FILE_SYSTEM
-- mkfifo
make_fifo(a_path STRING a_mode INTEGER
-- Makes a FIFO special file
require
valid_path a_path/= Void and then not a_path.is_empty
feature(s) from POSIX FILE _SYSTEM
-- mkfifo
mkfifo (a_path STRING a_mode INTEGER
-- Makes a FIFO special file
require
valid_path a_path /= Void and then not a_path.is_empty
invariant
path_should_existportable_path/= Void,
end of POSIX_FILE_SYSTEM

82 POSIX_FORK_ROOT

C.13 POSIX_FORK_ROOT

deferred classinterface POSIX_FORK _ROOT
feature(s) from POSIX _FORK_ROOT
-- process properties
pid: INTEGER
-- either the current process identifier or the childs
require
valid_pid is_pid_valid
ensure
valid_pid Result> 0
is_valid_child_processBOOLEAN
-- returns True if this object seems to refer to a valid child process
-- the real child process might have stopped though
feature(s) from POSIX_FORK_ROOT
-- deferred routines
execute
-- start if child process
feature(s) from POSIX_FORK_ROOT
-- termination info
is_terminated_normallyBOOLEAN
-- has this process been terminated normally
require
valid_status_info is_terminated
feature(s) from POSIX_FORK_ROOT
-- termination info
is_exited BOOLEAN
-- has this process been terminated normally
require
valid_status_info is_terminated
exit_code INTEGER
-- low-order 8 bits of call to _exit or exit for this process
require
terminated_normally is_terminated_normally
require else
valid_status_info is_terminated
is_signaled BOOLEAN
-- child process was terminated due to receipt of a signal
-- that was not caught
require
valid_status_info is_terminated
signal_code INTEGER
-- signal of process terminated abnormally or was stopped
require
valid_status_info is_terminate
terminated_by_signalis_signaled
end of deferred POSIX_FORK_ROOT

Short (flat) listing of POSIX classes

83

C.14 POSIX_GROUP

class interface POSIX_GROUP
creation
make_from_naméa_name STRING
make_from_gid(a_gid INTEGER
feature(s) from POSIX_GROUP
-- creation
make_from_naméa_name STRING
make_from_gid(a_gid INTEGER
feature(s) from POSIX _GROUP
-- refresh cache
refresh
-- refresh cache with latest info from user database
feature(s) from POSIX _GROUP
-- queries
name STRING
-- group name
gid: INTEGER
-- ID number
invariant
valid_group group /= default_pointey
end of POSIX_GROUP

84

POSIX_LOCK

C.15 POSIX_LOCK

class interface POSIX_LOCK
creation
make
feature(s) from POSIX_LOCK
-- creation
make
feature(s) from POSIX_LOCK
-- members
allow_read BOOLEAN
-- This is a read lock
allow_all: BOOLEAN
-- No lock or used to remove a lock
allow_none BOOLEAN
-- This is a write lock
start INTEGER
length INTEGER
pid: INTEGER
feature(s) from POSIX_LOCK
-- settable members
set_allow_read
-- this is a read or shared lock
set_allow_all
-- to remove a lock
set_allow_none
-- this is a write or exclusive lock
set_seek_start
-- start is measured from the beginning of the file
set_seek_current
-- start is measured from the current position
set_seek_end
-- start is measured from the end of the file
set_start(a_start INTEGER
-- set relative offset in bytes
set_length(a_length INTEGER
-- number of bytes to lock
invariant
valid_buf. buf /= Void;

lock_type_knownallow_all or else allow_noneor else allow_read

end of POSIX LOCK

Short (flat) listing of POSIX classes 85

C.16 POSIX_MEMORY_MAP

class interface POSIX_MEMORY_MAP
creation
make (a_fd POSIX_FILE_DESCRIPTQRa_offset, a_sizeINTEGER a_base POINTER a_prot, a flags INT
-- raw interface to mmap
make_private(a_fd POSIX_FILE_DESCRIPTQRa_offset, a_sizeINTEGER
-- make a mapping where changes are private
-- this function can fail on certain system (Linux for
-- example) if a_offset is not a multiple of PAGE_SIZE
make_shareda_fd POSIX_FILE_DESCRIPTQRa_offset, a_sizeINTEGER
-- make a mapping where changes are shared, i.e. the
-- underlying object is also changed.
-- this function can fail on certain system (Linux for
-- example) if a_offset is not a multiple of PAGE_SIZE
feature(s) from POSIX _MEMORY_MAP
-- creation
make (a_fd POSIX_FILE_DESCRIPTQRa_offset, a_sizeINTEGER a_base POINTER a_prot, a_flags INT
-- raw interface to mmap
make_private(a_fd POSIX_FILE_DESCRIPTQRa_offset, a_sizeINTEGER
-- make a mapping where changes are private
-- this function can fail on certain system (Linux for
-- example) if a_offset is not a multiple of PAGE_SIZE
make_shareda_fd POSIX_FILE_DESCRIPTQRa_offset, a_sizeINTEGER
-- make a mapping where changes are shared, i.e. the
-- underlying object is also changed.
-- this function can fail on certain system (Linux for
-- example) if a_offset is not a multiple of PAGE_SIZE
feature(s) from POSIX_MEMORY_MAP
-- unmap
close
-- remove the mapping
feature(s) from POSIX_MEMORY_MAP
-- reading from the map
peek_byte(index INTEGER: INTEGER
-- consider memory an array of 8 bit values.
require
valid_index index >= 0 and index < size
ensure
possible_valuesResult>= 0 and Result< 256
feature(s) from POSIX_MEMORY_MAP
-- state
base POINTER
-- base address
offset INTEGER
-- offset from file
size INTEGER

86

POSIX_MEMORY_MAP

-- number of bytes mapping
fd: POSIX_FILE_DESCRIPTOR
end of POSIX_MEMORY_MAP

Short (flat) listing of POSIX classes

87

C.17 POSIX_PERMISSIONS

deferred classinterface POSIX_PERMISSIONS
feature(s) from POSIX _PERMISSIONS
apply
-- make permissions changes (if any) permanent
refresh
-- synchronize with permission changes possibly made on disk
feature(s) from POSIX_PERMISSIONS
-- query mode
allow_anyone_executeBOOLEAN
-- anyone allowed to execute the file?
allow_anyone_readBOOLEAN
-- anyone allowed to read the file?
allow_anyone_read_writeBOOLEAN
-- anyone allowed to read and write the file?
allow_anyone_write BOOLEAN
-- anyone allowed to write the file?
allow_group_executeBOOLEAN
-- process with a group ID that matches the files group
-- allowed to execute the file?
allow_group_read BOOLEAN
-- process with a group ID that matches the files group
-- allowed to read the file?
allow_group_read_ write BOOLEAN
-- process with a group ID that matches the files group
-- allowed to read the file?
allow_group_write BOOLEAN
-- process with a group ID that matches the files group
-- allowed to write the file?
allow_owner_executeBOOLEAN
-- owner allowed to execute the file
allow_read BOOLEAN
allow_owner_read BOOLEAN
allow_read_write BOOLEAN
allow_owner_read_write BOOLEAN
allow_write BOOLEAN
allow_owner_write BOOLEAN
is_set_group_id BOOLEAN
-- group ID set on execution?
is_set _gid BOOLEAN
-- group ID set on execution?
is_set user idBOOLEAN
-- user ID set on execution?
is_set_uid BOOLEAN
-- user ID set on execution?
feature(s) from POSIX_PERMISSIONS

88

POSIX_PERMISSIONS

-- set permissions
set_allow_anyone_executallow: BOOLEAN
-- give anyone execute permission
ensure
executability not allow or allow_anyone_execute
set_allow_anyone_rea¢allow: BOOLEAN
-- give anyone read permission
ensure
readability. not allow or allow_anyone_read
set_allow_anyone_read_writ@llow: BOOLEAN
-- give anyone read and write permissions
ensure
writability: not allow or allow_anyone read_write
set_allow_anyone_writéallow: BOOLEAN
-- give anyone write permission
ensure
writability: not allow or allow_anyone_write
set_allow_group_executg@llow: BOOLEAN
-- give group execute permission
ensure
executability not allow or allow_group_execute
set_allow_group_readallow: BOOLEAN
-- give group read permission
ensure
readability. not allow or allow_group_read
set_allow_group_read_writéallow:. BOOLEAN
-- give group read and write permission
ensure
writability: not allow or allow_group_read_write
set_allow_group_writglallow: BOOLEAN
-- give group write permission
ensure
writability: not allow or allow_group_write
set_allow_owner_execut@llow: BOOLEAN
-- give owner execute permission
ensure
executability not allow or allow_owner_execute
set_allow_read(allow: BOOLEAN
-- give read permission
ensure
readability: not allow or allow_owner_read
set_allow_owner_readallow: BOOLEAN
-- give read permission
ensure
readability. not allow or allow_owner_read
set_allow_read_writglallow: BOOLEAN
-- give read/write permission

Short (flat) listing of POSIX classes

89

ensure
writability: not allow or allow_owner_read_write
set_allow_owner_writgallow: BOOLEAN
-- give read/write permission
ensure
writability: not allow or allow_owner_read_write
set_allow_write(allow: BOOLEAN
-- give write permission
ensure
writability: not allow or allow_owner_write
feature(s) from POSIX_PERMISSIONS
-- direct access to Unix fields
uid: INTEGER
-- id of object owner, always O on NT
feature(s) from POSIX _PERMISSIONS
-- direct access to Unix fields
owner_id INTEGER
-- id of object owner, always 0 on NT
gid: INTEGER
-- id of group, always 0 on NT
group_id INTEGER
-- id of group, always 0 on NT
mode INTEGER
-- the bit coded Unix mode field
feature(s) from POSIX _PERMISSIONS
-- set owner and group
set_owner_id(a_owner_id INTEGER
-- change the owner
set_group_id(a_group_id INTEGER
-- change the group
end of deferred POSIX_PERMISSIONS

90

POSIX_SIGNAL

C.18 POSIX_SIGNAL

class interface POSIX_SIGNAL
creation
make (a_value INTEGER
feature(s) from POSIX_SIGNAL
-- creation
make (a_value INTEGER
feature(s) from POSIX_SIGNAL
-- set signal properties, make effective with apply
apply
-- make changes effective
set_child_stop(stop BOOLEAN
-- generate SIGCHLD when children stop
set_default_action
-- install signal-specific default action
set_ignore_action
-- ignore signal
require
not_sig_child value /= SIGCHLD
set_mask(a_mask POSIX_SIGNAL_SBT
feature(s) from POSIX_SIGNAL
-- signal state
child_stop BOOLEAN
-- generate SIGCHLD when children stop
is_defaulted BOOLEAN
-- signal is handled by its specific default action
handler POINTER
-- pointer to function which catches this signal
is_ignored BOOLEAN
-- signal is ignored
mask POSIX_SIGNAL_SET
value INTEGER
-- the signal
refresh
-- get latest state for this signal
invariant
has_memory sigaction /= Void,
end of POSIX_SIGNAL

Short (flat) listing of POSIX classes

91

C.19 POSIX_STATUS

deferred classinterface POSIX_STATUS
feature(s) from POSIX_STATUS
refresh
-- refresh the cached information
feature(s) from POSIX_STATUS
-- stat members
ino: INTEGER
feature(s) from POSIX_STATUS
-- stat members
inode INTEGER
mtime INTEGER
-- Unix time
modification_time INTEGER
-- Unix time
change_dateINTEGER
-- Unix time
permissions POSIX_PERMISSIONS
-- file permissions
ensure
valid_result Result/= Void
size INTEGER
-- size of file in bytes
feature(s) from POSIX_STATUS
-- direct access to the unix fields, not recommended
unix_gid INTEGER
unix_mode INTEGER
unix_uid INTEGER
invariant
valid_stat stat /= Void;
end of deferred POSIX_STATUS

92 POSIX_SYSTEM

C.20 POSIX_SYSTEM

class interface POSIX_SYSTEM
feature(s) from POSIX_SYSTEM
-- sysconf queries, run-time determined
arg_max INTEGER
-- The lenght of arguments for the exec() function
child_max INTEGER
-- The number of simultaneous processes per real user ID
clock_ticks INTEGER
-- The number of clock ticks per second
ngroups_max INTEGER
-- The number of simultaneous supplementary group IDs
stream_max INTEGER
-- The maximum number of streams that one process can have
-- open at one time.
tzname_maxINTEGER
-- The maximum number of bytes in a timezone name.
open_max INTEGER
-- The maximum number of files that one process can have
-- open at one time.
page_size INTEGER
-- granularity in bytes of memory mapping and process memory locking
has_job_control BOOLEAN
-- Job control functions are supported.
has_saved_idsBOOLEAN
-- Each process has a saved set-user-ID and a saved set-group-ID
posix_version INTEGER
-- Indicates the 4-digit year and 2-digit month that the
-- standard was approved
featurgs) from POSIX_SYSTEM
-- compile-time determined queries
supports_asynchronous:i@OOLEAN
-- True if the message passing API is supported
supports_file_synchronizatioBOOLEAN
-- True if file synchronization is supported
supports_memory_mapped_fildE8OOLEAN
-- True if memory mapped files are supported
supports_memory_locking3OOLEAN
-- True if memory locking is supported
supports_memlock rang@®@OOLEAN
-- True if memory range locking is supported
supports_memory_protectioBOOLEAN
-- True if memory protection is supported
supports_message_passir@OOLEAN
-- True if the message passing API is supported
supports_priority _schedulingBOOLEAN

Short (flat) listing of POSIX classes

93

-- True if priority scheduling is supported
supports_semaphore8OOLEAN
-- True if semaphores are supported
supports_shared_memory_objecBOOLEAN
-- True if shared memory objects are supported
supports_synchronized :iBOOLEAN
-- True if synchronized io is supported
supports_timers BOOLEAN
-- True if timers are supported
supports_threadsBOOLEAN
-- True if thread are supported
feature(s) from POSIX_SYSTEM
-- uname queries
system_nameSTRING
node_name STRING
release STRING
version STRING
machine STRING
end of POSIX _SYSTEM

94

POSIX_TERMIOS

C.21 POSIX_TERMIOS

class interface POSIX_TERMIOS
creation
make (a_fd¢ POSIX_FILE_DESCRIPTOR
require
valid_file_descriptor a_fd.is_attached_to_terminal
feature(s) from POSIX _TERMIOS
-- creation
make (a_fd POSIX_FILE_DESCRIPTOR
require
valid_file_descriptor a_fd.is_attached_to_terminal
feature(s) from POSIX_TERMIOS
-- raw individual fields
iflag: INTEGER
-- input mode flags
oflag INTEGER
-- output mode flags
cflag INTEGER
- control mode flags
Iflag: INTEGER
- local mode flags
feature(s) from POSIX_TERMIOS
-- more friendly settings
is_input_echoedBOOLEAN
-- are input characters echoed back to the terminal?
is_receiving BOOLEAN
-- If false, no characters are received
set_echo_inpu{enable BOOLEAN
set_echo_new_linéenable BOOLEAN
set_input_control(enable BOOLEAN
-- enable start/stop input control
set_receive(enable BOOLEAN
feature(s) from POSIX _TERMIOS
-- line control functions

flush_input

-- discards all data that has been received but not read
drain

-- wait for all output to be transmitted to the terminal
send_break

-- sends a break to the terminal
feature(s) from POSIX_TERMIOS
-- get/set baudrates as symbols
input_speed INTEGER
-- returns terminal input baud rate as symbolic value
output_speedINTEGER
-- returns terminal output baud rate as symbolic value

Short (flat) listing of POSIX classes 95

set_input_speednew_rate INTEGER
-- sets terminal input baud rateew_rateis one of the
-- BXXXX constants
set_output_spee¢hew_rate INTEGER
-- sets terminal output baud rategw_rateis one of the
-- BXXXX constants
feature(s) from POSIX_TERMIOS
-- symbol to baud rate conversions
speed_to_baud_ratésymbol INTEGER: INTEGER
-- given a baud rate symbol, the real baud rate is returned.
feature(s) from POSIX_TERMIOS
-- apply/refresh state
apply_now
-- change occurs immediately
apply_drain
-- change occurs after all output written fd has been
-- transmitted. This function should be used when changing
-- parameters that affect output.
apply_flush
-- change occurs after all output written fd has been
-- transmitted. All input that has been received but not
-- read, is discarded before the change is made.
refresh
-- get terminal settings currently in effect
feature(s) from POSIX _TERMIOS
-- state
fd: POSIX_FILE_DESCRIPTOR
-- the file descriptor for these terminal settings
invariant
valid_attr. attr /= Void and then attr.size = posix_termios_size
valid_fa fd /= Void,
end of POSIX _TERMIOS

96 POSIX_TIMED_COMMAND

C.22 POSIX_TIMED_COMMAND

deferred classinterface POSIX_TIMED COMMAND
feature(s) from POSIX_TIMED_COMMAND
-- creation
make (a_secondsINTEGER
require
valid_secondsa_seconds>= 1 and a_seconds<= 65535
feature(s) from POSIX_TIMED_COMMAND
-- execution
execute BOOLEAN
-- Return true ifdo_executecompleted within the time it
-- should execute.
feature(s) from POSIX_TIMED COMMAND
-- state
seconds INTEGER
-- the number of seconds available to execute the command
set_secondga_secondsINTEGER
invariant
valid_secondsseconds>= 1,
end of deferred POSIX_TIMED_COMMAND

Short (flat) listing of POSIX classes

97

C.23 POSIX_USER

class interface POSIX_USER
creation
make_from_naméa_name STRING
require
valid_name a_name/= Void and then not a_name.is_empty
make_from_uid(a_uid INTEGER
require
valid_uid a_uid >= 0
feature(s) from POSIX _USER
-- creation
make_from_naméa_name STRING
require
valid_name a_name/= Void and then not a_name.is_empty
make_from_uid(a_uid INTEGER
require
valid_uid a_uid >= 0
feature(s) from POSIX_USER
-- refresh cache
refresh
-- refresh cache with latest info from user database
feature(s) from POSIX_USER
-- queries
name STRING
-- login name
uid: INTEGER
-- ID number
gid: INTEGER
-- group ID number
home_directory STRING
-- initial working directory
shell STRING
-- initial user program
invariant
valid_passwd passwd/= default_pointer
end of POSIX_USER

98

XML_GENERATOR

C.24 XML_GENERATOR

class interface XML_GENERATOR
creation
make
feature(s) from XML_GENERATOR
-- creation
make
feature(s) from XML_GENERATOR

-- constants from the XML specification, should be Unicode...

ValidFirstChars STRING
-- which characters are valid as the first character
ValidOtherChars STRING
-- which characters are valid as second etc characters
feature(s) from XML _GENERATOR
-- queries
is_header_written BOOLEAN
is_started (tag: STRING: BOOLEAN
is_tag_started BOOLEAN
is_valid_attribute_namdattribute STRING: BOOLEAN
-- Return True if this is a valid attribute name
xmt STRING
-- the result
feature(s) from XML _GENERATOR
-- influence state
clear
-- start fresh
ensure
no_tags is_empty
feature(s) from XML_GENERATOR
-- commands that expangdml
add_header
require
valid_point_for_headernot is_header_written
add_data(data STRING
-- write data in the current tag
require
valid_point_for_data is_tag_started
add_tag (tag, data STRING
-- shortcut foradd_tag add_dataand stop_tag
require
have headeris_header_written
extend (stuff: STRING

-- add anything to the curremtml string, youre on your own here!

new_line
set_attribute(attribute, value STRING
-- set an attribute of the current tag

99

Short (flat) listing of POSIX classes

require
valid_attribute is_valid_attribute_nam@attribute)
start_tag (tag: STRING

-- start a new tag

stop_tag
-- stop last started tag

require
tag_is_started is_tag_started

invariant
same_sizeattributes.count= values.count

end of XML_GENERATOR

To do

STDC_CURRENT_PROCESS

1. Addclock .

STDC_FILE

1. addread_integer, read_double, read_boolean, etc.

STDC_LOCALE_NUMERIC

1. Complete the list of properties

STDC_PATH

1. assumes there is an access routine, not in Standard C.

STDC_STATUS

Create this class?

STDC_STATUS

1. return STDC_TIME instead of unix time

STDC_TIME

1. Add elapsed seconds

POSIX_CURRENT_PROCESS

1. Addpause .

POSIX_EXEC_PROCESS

1. turn off Eiffel exception handling after the final execvp, else you get back signals not captured
by child process as your signals, or so it seems (or perhaps you're killing the Eiffel process, but
not the subprocess it generated??)

To do 101

Killing subprocesses works sometimes, but not always.

Remove exception handling just before execvp?

how about capture to /dev/null?

3. can we capture i/o for every forked process? If so, move this code to POSIX_FORK_ROOT.

n

POSIX_FILE_DESCRIPTOR

1. possible to open exclusively and so?

2. add nonblocking io

3. Asynchronous I/O: create separate class, as locking, a request to do something and pass this to
the file descriptor.

POSIX_MEMORY_MAP

More read functions.

No write functions yet.
Cannot change protection.
No locking.

PN P

POSIX_SEMAPHORE

1. not valid for named semaphore | think.
2. have to add various close/unlink functions.

POSIX_PATH

1. Implementis_portable

MQUEUE

1. Notin the free unices at this moment. Maybe have to get a copy of Solaris x86??

DIRECTORY_BROWSER

1. recursive browsing
2. add filter properties

SUS_SYSLOG

1. Really is a singleton, make creation and close routines once routines? Factory?

102 Other

Other

1. remove ugly const_ prefix from constants. Uppercase should be good enough.
Almost done, only const_ EOF remains, not easy to replace perhaps.

2. Compare POSIX_SIGNAL with ISE UNIX_SIGNAL: perhaps name routines is_ignored, is_defaulted?
They have an is_caught function, useful? Means this signal generates an exception. Also they
can ask if it is caught.

Known bugs

not for every raise_posix_error the error code is set probably.
does STRING_HELPER leak memory in to_external? How is memory used for these conver-

sions being freed? Is memory used there?
e Ifachild processis signalled (terminated), the funcB@SIX_FORK_ROOT.is_terminated_normally

sometimes returns True.

Bibliography

_exit 38

a

abort 38
abort
STDC_CURRENT_PROCESS38
access 38
Ace.ace 7
add_data
POSIX_CGI 29
alarm 38
allocate

STDC_DYNAMIC_MEMORY 40
allocate_and_clear
STDC_DYNAMIC_MEMORY 32, 38
ANY 8
apply_drain
POSIX_FORK_ROOT 41
apply_flush
POSIX_FORK_ROOT 41
apply_now
POSIX_TERMIOS 41
apply_owner_and_group
POSIX_PERMISSIONS_PATH 38
asctime 38
atexit 38
attempt_lock
POSIX_FORK_ROOT 38

b
backslash 11
BASE_FILE_DESCRIPTOR ii, 71, 72
Borland C compiler 6
browse
directory 17
browse_directory
POSIX_FILE_SYSTEM 17
build _ve.sh 8

c
c_stdio.c 36
c_stdio.h 36

calloc 38
CAPI_STDIO 2, 36
cecil.h 8

cfgetispeed 38
cfgetospeed 38

cfsetispeed 38
cfsetospeed 38
cgi 28
change

directory 14
change_directory
POSIX_FILE_SYSTEM 38
change_mode
POSIX_FILE_SYSTEM 38
chdir 38
chmod 38
chop
POSIX_TEXT_FILE 10
chown 38

Index

clear
POSIX_FORK_ROOT 7

clear_all
POSIX_FORK_ROOT 7

clear_error
STDC _FILE 38

clearerr 38

clock 38,100

close 38

close
POSIX_FILE_DESCRIPTOR 38
STDC_FILE 38

closedir 38

creat 38

create

directory 14
create_read_write

POSIX_FILE_DESCRIPTOR 38

ctermid 38

ctime 38

<ctype.h> 42

current_directory
POSIX_FILE_SYSTEM 39

Index

105

cuserid 38

d

deallocate
STDC_DYNAMIC_MEMORY 39

default_format
POSIX_FORK_ROOT 19
STDC_TIME 38

detach
POSIX_FORK_ROOT 25

difftime 38

directory

test_suite 30
DIRECTORY_BROWSER iii, 101
<dirent.h> 38, 40
dup 38
dup2 38

e
effective_group_id
POSIX_CURRENT_PROCESS39
effective_user_id
POSIX_CURRENT_PROCESS39
eiffel.h 35
elj-win32 7
empty
POSIX_FORK_ROOT 7
end-of-line character 10

eof
STDC_FILE 39
errno 2
error
STDC_FILE 39
execl 38
execle 38
execlp 38
execute

POSIX_FORK_ROOT 18, 23, 25
POSIX_EXEC_PROCESS38
execv 38

execve 38
execvp 38
exit 38
exit

STDC_CURRENT_PROCESS38

f

fclose 38

fentl 38
<fcntl.h> 38, 40
fdatasync 39

fdopen 39
feof 39
ferror 39
fflush 39
fgetc 39
fgetpos 39
fgets 39
fileno 39
flush
STDC_FILE 39
fopen 35, 39
fork 39
fork

POSIX_CURRENT_PROCESS?3, 39

format
POSIX_FORK_ROOT 19
STDC _TIME 41

forum.txt iv
fpathconf 39
fprintf 39
fputc 39
fputs 39
fread 39
free 39
freopen 39
fseek 39
fsetpos 39
fstat 39
fsync 39
ftell 39
fwrite 39
g
get_character
STDC_FILE 39
get_lock

POSIX_FORK_ROOT 13, 38
POSIX_FILE_DESCRIPTOR 13
get_position
STDC_FILE 39
get_string
STDC_FILE 39

106

getc 39
getchar 39
getcwd 39
getegid 39
getenv 39
geteuid 39
getgid 39
getgrgid 39

getgrnam 39
getgroups 39
getlogin 38, 39

getpgrp 39
getpid 5,39
getppid 39
getpwnam 39
getpwuid 39
gets 39
getuid 39
gmtime 39
<grp.h> 39

i

is_accessible

POSIX_FILE_SYSTEM 38
is_attached_to_terminal
POSIX_FILE_DESCRIPTOR 39
is_empty
STRING 7
is_in_group
POSIX_CURRENT_PROCESS39
is_modifiable
POSIX_FORK_ROOT 15
is_readable
POSIX_FILE_SYSTEM 16
is_terminated_normally
POSIX_FORK_ROOT 102
isatty 39

k
kill 39
kill
POSIX_PROCESS 39

I

last_string
POSIX_FORK_ROOQT 10

lcc 6

libeposix.a 6, 7
libeposix.lib 7
license iv

link 39

link

POSIX_FILE_SYSTEM 39
loadpath.se 7,8
local_date_string

POSIX_FORK_ROOT 19
local_time_string

POSIX_FORK_ROOT 19
<locale.h> 39, 40

localeconv 39
localtime 39
login_name

POSIX CURRENT_PROCESS39
Iseek 40

m
make
POSIX_PIPE 40
POSIX_TERMIOS 41
STDC_TEMPORARY_FILE 41
make_as_duplicate
POSIX_FILE_DESCRIPTOR 38
make_directory
POSIX_FILE_SYSTEM 40
make_fifo
POSIX_FILE_SYSTEM 40
make_from_file
POSIX_FILE_DESCRIPTOR 39
make_from_file_descriptor
POSIX_FILE 39
make_from_gid
POSIX_GROUP 39
make_from_name
POSIX_GROUP 39
POSIX_USER 39
make_from_now
POSIX_TIME 19
make_from_uid
POSIX_USER 39
make_from_unix_time
STDC _TIME 41
Makefile.bcc 6
Makefile.lcc 6
Makefile.msc 6

Index

107

makelib.bat 6
malloc 40
max_filename_length
POSIX_DIRECTORY 40
mblen 40
mbstowcs 40
mbtowc 40
Microsoft C compiler 6
minicom 26

mkdir 40

mkfifo 40

mktime 40

modem 26

MQUEUE iii, 101

o]
open 40
open
POSIX_FILE 2
POSIX_FILE_DESCRIPTOR 40
open_read
POSIX_FORK_ROOT 2, 40
open_read_write
POSIX_FORK_ROOT 40
open_write
POSIX_FORK_ROOT 40
opendir 40
Open Source iv

p

p_stdio.c 36
p_stdio.h 36
PAPI_UNISTD 2
parent_pid

POSIX_CURRENT_PROCESS39
pathconf 40
pause 40, 100
pause

POSIX_CURRENT_PROCESS40
permissions

POSIX_FILE_SYSTEM 16
perror 40
pid

POSIX_CURRENT_PROCESS5, 39
pipe 40
POSIX_ASYNC_IO_REQUEST ii, 58, 60
POSIX_BASE i, 3, 61

POSIX_BINARY_FILE 9
POSIX_CGI i, 28, 29, 62
POSIX_CHILD_PROCESSIi, 63
POSIX_CONSTANTS i, 3, 64, 66
POSIX_CURRENT_PROCESSii, 23, 68,
100
POSIX_DAEMON ii, 25, 69
POSIX_DIRECTORY i, 17, 18, 38, 40, 70
POSIX_DYNAMIC_MEMORY 21, 31
POSIX_ENV_VAR 21
100
POSIX_FILE 9
38,71, 76, 78, 101
POSIX_FILE_SYSTEM i, 3, 14, 15, 79,
80
POSIX_FORK_ROOT ii, 5, 23, 82
POSIX_GROUP ii, 83
POSIX_LOCK i, 13, 84
POSIX_PATH iii, 101
POSIX_PERMISSIONS ii, 16, 17, 87, 88
POSIX_SEMAPHORE iii, 101
posix_setsid
PAPI_UNISTD 40
POSIX_SHELL_COMMAND 18
POSIX_SIGNAL i, 40, 90
POSIX_STAT 17
POSIX_STATUS i, 16, 39, 41, 91
POSIX_SYSTEM i, 41, 92
POSIX_TERMIOS i, 94
POSIX_TEXT_FILE 9, 11
POSIX_TIMED_COMMAND i, 38, 96
POSIX_USER i, 97
printf 40
process_group_id
POSIX_CURRENT_PROCESS39
put_string
STDC_FILE 39
putc 40
putc
STDC_FILE 39
putchar 40
putenv = 21
puts 40
<pwd.h> 39

108

r
raise 40
rand 40
read 40
read
POSIX_FILE_DESCRIPTOR 40
STDC_FILE 39
read_character
POSIX_FORK_ROOT 39
STDC_FILE 8
read_string
POSIX_FORK_ROOT 39
readdir 40
real_group_id
POSIX_CURRENT_PROCESS39
real_user_id
POSIX_CURRENT_PROCESS39
realloc 40
refresh
POSIX_PERMISSIONS 16
remove 40
remove
directory 14
remove_directory
POSIX_FILE_SYSTEM 40
remove_file
GENERAL 8
POSIX_FILE_SYSTEM 8§, 40
rename 40
rename_to
POSIX_FILE_SYSTEM 40
reopen
STDC_FILE 39
resize
STDC_DYNAMIC_MEMORY 40
restore_group_id
POSIX_FORK_ROOT 40
restore_user_id
POSIX_FORK_ROOT 40
rewind 40
rewind
STDC_FILE 40
rewinddir 40
rmdir 40

scanf 40

seek
POSIX_FILE_DESCRIPTOR 40
STDC_FILE 39
seek from_current
POSIX_FORK_ROOT 39, 40
seek_from_end
POSIX_FORK_ROOT 39, 40
set_allow_anyone_read
POSIX_FORK_ROOT 16
set_allow_group_write
POSIX_FORK_ROOQOT 16
set_buffer
STDC_FILE 40
set_date
POSIX_FORK_ROOT 40
set_date_time
STDC_TIME 40
set_full_buffering
POSIX_FORK_ROOT 40
set_group_id
POSIX_CURRENT_PROCESS40
set_line_buffering
POSIX_FORK_ROOT 40
set_locale
STDC_CURRENT_PROCESS40
set_lock
POSIX_FORK_ROOT 38
set_native_locale
POSIX_FORK_ROOT 40
set_native_time
POSIX_FORK_ROOT 40
set_no_buffering
STDC_FILE 40
set_position
STDC_FILE 39
set_time
POSIX_FORK_ROOT 40
set_user _id
POSIX_CURRENT_PROCESS40
setbuf 40

setgid 40
<setjmp.h> 42
setlocale 40
setpgid 40
setsid 40
setuid 40
setvbuf 40

Index

109

sigaction 40
sigaddset 40
sigdelset 40
sigemptyset 40
sigfillset 40
sigismember 40
signal 40
<signal.h> 39, 40
sigpending 40
sigprocmask 40
sigsuspend 40
slash 11
sleep 40
sleep
POSIX_CURRENT_PROCESS40
sprintf 40
srand 41
sscanf 41
start_tag
POSIX_CGI 29
stat 16, 41
status
POSIX_FILE_DESCRIPTOR 17, 39
STC_TEMPORARY_FILE 31
<stdarg.h> 42
STDC_BASE i, 3, 43
STDC_BINARY_FILE 31
STDC_CONSTANTS i, 3, 31, 44
STDC_CURRENT_PROCESSIi, 31, 45,
100
STDC_DYNAMIC_MEMORY i, 31, 31,
46, 48
STDC_ENV_VAR i, 31, 49
STDC_FILE ii, 39, 50, 52, 54, 100
STDC_FILE_SYSTEM i, 31, 55
STDC_LOCALE_NUMERIC ii, 39, 100
STDC_PATH i, 100
STDC_SHELL_COMMAND 31, 41
STDC_STATUS i, 100, 100
STDC_SYSTEM i, 31, 56
STDC_TEXT_FILE 31
STDC_TIME i, 31, 38, 57, 100

<stdio.h> 36, 36, 38, 39, 40, 41
<stdioh> 39
<stdlib.h> 38, 39, 40, 41

strftime 41

support
commercial iv
SUS_SYSLOG iii, 30, 101
synchronize
POSIX_FILE_DESCRIPTOR 39
synchronize_data
POSIX_FILE_DESCRIPTOR 39
<sys/staat.h> 40
<sys/stat.h> 38, 39, 40, 41
<sys/utsname.h> 41
<sys/wait.h> 41
sysconf 41
system 41

t
tcdrain 41
tcflow 41
tcflush 41
tcgetattr 41
tcgetpgrp 41
tcsendbreak 41
tcsetattr 41
tcsetpgrp 41
tell
STDC_FILE 39
temporary_file_name
STDC_FILE_SYSTEM 41
terminal 13
<termios.h> 38
time 41
<time.h>
times 41
<times.h> 41
tmpfile 41
tmpnam 41
to_local
STDC_TIME 39
to_utc
STDC _TIME 39
touch
POSIX_FORK_ROOT 41
ttyname 41
ttyname
POSIX_FILE_DESCRIPTOR 41
tzset 41

38, 39, 40, 41

110

u w

umask 41 wait 41

uname 41 wait

ungetc 41 POSIX_FORK_ROOT 5

ungetc POSIX_CURRENT_PROCESSS, 41
STDC_FILE 41 wait_for

<unistd.h> 38, 39, 40, 41 POSIX _CHILD 5

unlink 2,41 wait_pid

unlink POSIX_FORK_ROOT 41
POSIX_FILE_SYSTEM 41 waited_child_pid

utime 41 POSIX_FORK_ROOT 5

utime waitpid 41
POSIX_FILE_SYSTEM 41 wcstombs 41

<utime.h> 41 wctomb 41

Windows 7, 8

v write 41

value write
STDC_ENV_VAR 39 POSIX_FILE_DESCRIPTOR 41

vfprintf 41 STDC_FILE 39

vprintf 41

vsprint 41 X

XML_GENERATOR i, 98

