
e-POSIX
The definitive and complete

Eiffel to Standard C and
POSIX 1003.1 binding

written by Berend de Boer

Contents

1 Requirements and installation 1
1.1 Requirements 1
1.2 Compiling the C code 1
1.2.1 Compiling on Unix 1
1.2.2 Compiling on Windows 2
1.2.3 Library naming conventions 2

2 Using e-POSIX 3
2.1 Using library.xace 3
2.2 Vendor specific notes 4
2.2.1 ISE Eiffel 4
2.2.2 SmartEiffel 4
2.2.3 Visual Eiffel 5
2.3 Platform specific notes 5
2.3.1 Linux 5
2.3.2 FreeBSD 5
2.3.3 Cygwin 6
2.3.4 BeOS 6
2.3.5 QNX 6
2.3.6 Win32 6

3 Design notes 7
3.1 Why an entire reimplementation? 7
3.2 Goals and guidelines 7
3.3 Class structure 8
3.4 Clients of this library 9
3.5 Forking 9
3.6 Books 12

4 Layers 13
4.1 Layers architecture 13
4.2 Standard C 13
4.3 Windows 13
4.3.1 Writing portable programs 13
4.3.2 Compiling POSIX programs in Windows 14
4.3.3 Native Windows 14
4.4 Introduction to the next chapters 16

5 Working with memory 17
5.1 Introduction 17
5.2 Allocating memory 17
5.3 Allocating memory 18
5.4 Using shared memory 18

ii

5.5 Memory maps 19

6 Working with files 21
6.1 Introduction 21
6.2 Standard C notes 21
6.3 Compatibility with Gobo 21
6.4 Working with streams 21
6.5 Working with streams using Standard C only 26
6.6 Working with file descriptors 27
6.7 Windows systems: binary mode versus text mode 30

7 Working with files: advanced topics 32
7.1 Redirecting stderr to stdout 32
7.2 Talking to your modem 32
7.3 Non-blocking I/O 34
7.4 Asynchronous I/O 34

8 Working with the file system 36
8.1 Portability 36
8.2 Standard C 36
8.3 POSIX 36

9 Working with processes 42
9.1 Introduction 42
9.2 Executing a child command 42
9.3 Catching a signal with Standard C 43
9.4 Catching a signal with POSIX 45
9.5 General wait for child handler 46
9.6 Forking a child process 47

10 Querying the operating system 50
10.1 Current time 50
10.2 Accessing environment variables 51
10.3 Capabilities 52

11 Working with the network 53
11.1 Sockets 53
11.2 Echo client 53
11.3 Echo client and server 54

12 Working with the network: advanced topics 58
12.1 Introduction 58
12.2 HTTP client 58
12.3 HTTP server 59

13 Writing daemons 60
13.1 Introduction 60
13.2 Windows 60
13.3 Creating a daemon 60

iii

13.4 Logging messages and errors 61
13.5 ULM based logging 62

14 Writing CGI programs 65

15 Error handling 73
15.1 Error handling with exceptions 73
15.2 Manual error handling 75

16 Security 78
16.1 Denial of service attacks 78
16.2 Authorization bypass attacks 79

17 Accessing C headers 80
17.1 Making C Headers available to Eiffel 80
17.2 Distinction between Standard C and POSIX headers 81
17.3 C translation details 81

A Posix function to Eiffel class mapping list 83

To do 88
ABSTRACT_DIRECTORY 88
EPX_FILE_SYSTEM 88
STDC_FILE 88
STDC_LOCALE_NUMERIC 88
STDC_PATH 88
STDC_TIME 88
POSIX_DAEMON 88
POSIX_EXEC_PROCESS 88
POSIX_FILE_DESCRIPTOR 89
POSIX_MEMORY_MAP 89
POSIX_SEMAPHORE 89
POSIX_SIGNAL 89
POSIX_STATUS 89
POSIX_MQUEUE 89
Security 89
Windows code 90
Other 90
Known bugs 90

Bibliography 91

Index 92

Introduction

It has been a great pleasure for me when I could announce the first public alpha release of this
manual. And then came the betas and the first release. Writing libraries like this is boring stuff.
Every Eiffel programmer should have had access to all those Standard C and POSIX routines long
ago. Anyway, now you and me have. Whatever a C programmer can do, you can. And even
more safe as this library protects you of inadvertently calling routines that are not portable (because
they’re simply not there :-)).

Writing libraries like this also seems to be a never ending story, as we now are at version 2.0. And
my to do list hasn’t shrinked, so stay tuned!

I actively support this library, so bug reports and wishes are gladly accepted. In the future, I hope
to be able to expand this library to add more stuff from the Single Unix Specification such as poll
and select support, and raw sockets. Also on my wish lists are an FTP, NEWS and IRC client
implementation.

Have fun using this library and I like to hear about applications!

Licensing
This software is licensed under the Eiffel Forum Freeware License, version 2. This license can be
found in the forum.txt file. Basically this license allows you to do anything with it, i.e. use it
for commercial or Open Source software without restrictions. But don’t sue me if something goes
wrong. And give me some credits.

Also explicitly allowed is copying parts of this library to your own, for example copying certain
Standard C or POSIX header wrappings. I prefer linking, but you don’t have to retype everything
if you don’t want to link.

Support
e-POSIX is a fully supported program. You can send requests for help directly to me. But to help
others profit from the discussion, and perhaps to get feedback when I’m short on time, it is suggested
that support messages are sent to eposix@yahoogroups.com.

Latest versions and announcements are available from http://groups.yahoo.com/group
/eposix/.

Commercial support
I’m available to give companies or organisations a one or two day course using POSIX and in
particularly this library. Prices are $1000 NZD a day, excluding VAT, travel and hotel expenses.
Contact me at berend@pobox.com.

mailto:eposix@yahoogroups.com
http://groups.yahoo.com/group/eposix/
http://groups.yahoo.com/group/eposix/
http://groups.yahoo.com/group/eposix/
http://groups.yahoo.com/group/eposix/
http://groups.yahoo.com/group/eposix/
http://groups.yahoo.com/group/eposix/
http://groups.yahoo.com/group/eposix/
mailto:berend@pobox.com

v

Acknowledgements
I like to thank people who, one way or another, have helped me in creating this library. They’re
listed in order they have been involved with this library or manual:

• Eugene Melekhov <eugene_melekhov@object-tools.com>: compiled it with Visual Eiffel.
As Visual Eiffel is the most strict compiler, he found a great many oversights that SmallEiffel
didn’t catch.

• mico/E team: I got many ideas for my C interface from the mico/E project. Sometime ago
Andreas Schulz wrote me that the micoe team wanted to use e-POSIX in mico/E. Andreas also
reported problems and suggested improvements, especially in the EPX _CGI class. Andreas
and Robert Switzer, thanks for the bug reports!

• Ida de Boer <ida@gameren.nl>: it was she who provided you with the POSIX to Eiffel
mapping table in appendix A.

• Steve Harris <scharris@worldnet.att.net>: suggested improvements, found a CAT call
problem and we had an interesting discussion about forking.

• Jörgen Tegnér <teg@post.netlink.se> reported a problem with an example, and a bug in
POSIX _EXEC _PROCESS.

• Marcio Marchini <mqm@magma.ca> contributed a lot to e-POSIX. He gave very useful
advice, submitted code, and supplied patches to compile e-POSIX better on Windows. I think it
is fair to say that you thank the Windows support in e-POSIX to Marcio.

• Eric Bezault: I’ve had some insightful discussions with Eric regarding architecture of libraries
such as e-POSIX. I think we never agreed :-), but the alternative error handling is due to his
comments!

• Andreas Leitner: Discussions about using eposix which will lead to even closer integration
with Gobo in subsequent releases.

• [sven]: various comments and suggestions.

Colophon
The text of this manual was entered with GNU Emacs 21.2.1 on RedHat Linux 7.1. It was typeset
with pdfTEX using the ConTEXt macro package, see http://www.pragma-ade.com. BON
diagrams were created with METAPOST.

mailto:eugene_melekhov@object-tools.com
mailto:eugene_melekhov@object-tools.com
mailto:eugene_melekhov@object-tools.com
http://www.math.uni-goettingen.de/micoe/
http://www.math.uni-goettingen.de/micoe/
mailto:ascholz@math.uni-goettingen.de
mailto:ascholz@math.uni-goettingen.de
mailto:ida@gameren.nl
mailto:ida@gameren.nl
mailto:ida@gameren.nl
mailto:ida@gameren.nl
mailto:scharris@worldnet.att.net
mailto:scharris@worldnet.att.net
mailto:scharris@worldnet.att.net
mailto:teg@post.netlink.se
mailto:teg@post.netlink.se
mailto:teg@post.netlink.se
mailto:mqm@magma.ca
mailto:mqm@magma.ca
mailto:mqm@magma.ca
mailto:ericb@gobosoft.com
mailto:ericb@gobosoft.com
mailto:nozone@sbox.tugraz.at
mailto:nozone@sbox.tugraz.at
http://www.pragma-ade.com
http://www.pragma-ade.com
http://www.pragma-ade.com
http://www.pragma-ade.com
http://www.pragma-ade.com

In this chapter:

• Requirements
• Compiling the C code

1
Requirements

and installation

1.1 Requirements
e-POSIX has three requirements:

1. e-POSIX requires Gobo release 3.2 or higher. You can download Gobo at http://www.
gobosoft.com/. Gobo must be installed.

2. e-POSIX requires that the environment variable EPOSIX is set to the root directory where the
e-POSIX are unpacked.

3. On Windows, e-POSIX requires that the environment variable GOBO_CC is set to the name of
the C compiler you are using. Failure to do so will result in link errors. Perhaps in a future
geant release this will be set automatically.

1.2 Compiling the C code
Before e-POSIX can be used, a few C files need to be compiled into a library. The steps differ if you
are using a Unix derivative, or a Windows based system.

1.2.1 Compiling on Unix

Before the C files can be compiled, e-POSIX must be configured. If you have just one Eiffel compiler
on your system, this should be sufficient:

./configure --prefix=$EPOSIX
make

If you have multiple Eiffel compilers, you can specify the compiler with:

./configure --with-compiler=ve --prefix=$EPOSIX

The –prefix switch is a trick to make sure that you can type:

make install

after the make was successful. With this step the library is installed into the \$EPOSIX/lib
directory. This is the location where e-POSIX’s src/library.xace expects it. Without the
–prefix switch the library will usually be installed in /usr/local/lib.

More information about configure options can be displayed with:

./configure --help

http://www.gobosoft.com/
http://www.gobosoft.com/
http://www.gobosoft.com/
http://www.gobosoft.com/
http://www.gobosoft.com/

2 Compiling the C code

1.2.2 Compiling on Windows

For Windows system, I’ve supplied a tool —build with e-POSIX— that can build the necessary
e-POSIX library for your Eiffel and C compiler.

Type:

makelib

to get help. Type:

makelib -ise -msc

to compile the C code with Microsoft’s Visual C compiler targeting the ISE Eiffel compiler.

Only the Microsoft supplied library did work, i.e. link, with VisualEiffel:

makelib -ve -msc

Type:

makelib -se -bcb

to compile the C code with Borland’s C compiler targeting SmartEiffel. It was tested with the free
Borland C version 5.5 compiler.

Type:

makelib -se -lcc

to compile the C code with elj-win32’s lcc C compiler.

If you have both the Borland C compiler and lcc installed, make sure the make.exe in your path
is the correct one!

The generated library will have the name of the C compiler in its path. Make sure GOBO_CC has
the correct value when compiling an e-POSIX program, see table 1.1.

bcb Borland C compiler.

msc Microsoft C compiler.

lcc lcc-win32 compiler.

Table 1.1 Possible values for theGOBO_CC
environment variable

1.2.3 Library naming conventions

The name of this library starts with libeposix. On Unix the name of the Eiffel vendor is
appended, so libeposix_se.a is the library for SmartEiffel. On Windows systems the name
of the Eiffel vendor and the C compiler are appended. On Windows different C compilers have
incompatible libraries, so they need to be distinguished. On Windows the e-POSIX library for ISE
Eiffel compiled with the Microsoft Visual C compiler is called libeposix_ise_msc.lib.

The vendor names are derived from the names the Gobo Eiffel package uses, i.e. theGOBO_EIFFEL
environment variable.

The C compiler is derived from the GOBO_CC environment variable.

In this chapter:

• Using library.xace
• Vendor specific notes
• Platform specific notes

2
Using e-POSIX

2.1 Using library.xace
Since Gobo 3.0 Eiffel library writes have a new great tool at their dispose: gexace. Eiffel library
writers have to write and maintain just a single file, library.xace. You can this file file in the
e-POSIX src subdirectory.

Typically, a library.xace is included in a system.xace. A typical example, including all
required Gobo files, is:

<?xml version="1.0"?>

<system name="eposix_test">
<description>
system: "eposix example program"
author: "Berend de Boer [berend@pobox.com]"
copyright: "Copyright (c) 2002-2003, Berend de Boer"
license: "Eiffel Forum Freeware License v2 (see forum.txt)"
date: "$Date: $"
revision: "$Revision: $"

</description>

<root class="${ROOT_CLASS}" creation="make"/>

<option unless="${DEBUG}">
<option name="assertion" value="none"/>
<option name="garbage_collector" value="internal"/>
<option name="finalize" value="true" unless="${GOBO_EIFFEL}=ve"/>

</option>
<option if="${DEBUG}">
<option name="assertion" value="all"/>
<option name="garbage_collector" value="internal"/>
<option name="finalize" value="false"/>

</option>

<cluster name="example" location="${EPOSIX}/doc" unless="${GOBO_EIFFEL}=ve"/>

4 Vendor specific notes

<mount location="${EPOSIX}/src/library.xace"/>
<mount location="${GOBO}/library/xml/library.xace"/>
<mount location="${GOBO}/library/parse/library.xace"/>
<mount location="${GOBO}/library/lexical/library.xace"/>
<mount location="${GOBO}/library/structure/library.xace"/>
<mount location="${GOBO}/library/kernel/library.xace"/>
<mount location="${GOBO}/library/utility/library.xace"/>
<mount location="${GOBO}/library/kernel.xace"/>

</system>

2.2 Vendor specific notes

2.2.1 ISE Eiffel

e-POSIX supports ISE Eiffel 5.3. Earlier versions might still work. e-POSIX has been tested under
the following conditions:

1. I used Microsoft Windows 2000, Service Pack 2.
2. I used the Borland C 5.5 and Microsoft Visual C++ 6.0 compiler.

2.2.2 SmartEiffel

e-POSIX was tested with SmartEiffel 1.1 on FreeBSD, Linux and Windows.

Because SmartEiffel has a tendency to provide lots of non-ELKS routines in its kernel classes —a
bad thing in my opinion— I had to write a new ANY. My ANY renames GENERAL. remove
_file, so I wouldn’t get a conflict with POSIX _FILE _SYSTEM. remove _file.

There is no reason for the presence of GENERAL. remove _file, I expect this to be removed
soon1, so my ANY can be deleted when this has happened.

Some issues have been detected with SmartEiffel 1.1. If you use this version, I suggest you don’t
use boost mode and don’t use the garbage collector. The most stable release of SmallEiffel seems
to be -0.74.

If you use lcc-win32 as your C compiler, note that for the Gobo XM _UNICODE _CHARACTER
_CLASSES class SmartEiffel generates code that does not compile with lcc-win32 due to some
line length limit. This problem was still present with the latest lcc-win32 compiler, version 3.8,
compiled on December 23.

If you use SmartEiffel and if you don’t use Gobo’s gexace tool to generate SmartEiffel’s Ace file,
you might see a complaint about a routine stdc_signal_switch_switcher not being found
when linking. In that case you will need to put a cecil.se file in your directory. The contents of
this file should be:

I wrote that two years ago. . .1

Using e-POSIX 5

-- The name of our include C file:
cecil.h
-- The features called from C:
stdc_signal_switch_switcher STDC_SIGNAL_SWITCH switcher
stdc_exit_switch_at_exit STDC_EXIT_SWITCH at_exit

But I strongly suggest to make the switch to Gobo’s gexace tool as this tool makes compilation for
different Eiffel compilers a lot easier.

2.2.3 Visual Eiffel

e-POSIX has been tested with two of ObjectTool’s offerings:

1. Their free VisualEiffel 4.1 for Linux.
2. VisualEiffel Professional 4.1 for Windows.
3. Version 4.0 or earlier are not supported, due to a change in semantics of the make routine of the

STRING class. Only version 4.1 is ELKS compatible.

Follow these steps to compile with VisualEiffel 4 on Windows:

1. Make sure the VE_BIN environment variable is set to the Bin directory in the VisualEiffel sub-
directory. On my system it is set to M:/Program Files/ObjectTools/VisualEiffel
/Bin.

2. Create the libeposix_ve_msc.lib library using the Microsoft Visual C compiler:
makelib -ve -msc

3. Use gexace to generate an .esd file.
4. Make sure to set the linker supplier option to Microsoft in your system.xace file! So an

option like this should be present:
<option name="linker" value="microsoft" if="\${GOBO_EIFFEL}=ve"/>

2.3 Platform specific notes
Although e-POSIX should, in principle, run on every platform that supports Standard C or POSIX,
it cannot be tested on every platform by me alone. This section gives details about the platforms
I’ve used. The main thing you need to do is to edit e-POSIX’s src/library.xace to the proper
libraries for your platform are linked. The default src/library.xace is suited for Linux only.

2.3.1 Linux

The latest version of e-POSIX was tested with kernel 2.4.22 and glibc 2.2.93.

2.3.2 FreeBSD

The latest version of e-POSIX was tested with FreeBSD 4.9-STABLE. FreeBSD doesn’t support
fdatasync, so we do a fsync there. Cases like that are automatically detected by the config-
ure script.

6 Platform specific notes

You have to edit /src/library.xace to link the proper library for FreeBSD. Look at the
comments.

2.3.3 Cygwin

The latest version of e-POSIX was tested with Cygwin 1.3.x. Some remarks:

1. Locking doesn’t seem to be supported.
2. fifo’s (mkfifo) are not supported.
3. No support for fdatasync, so we do a fsync there.

2.3.4 BeOS

The latest version of e-POSIX was tested with BeOS 5.03. BeOS has a nice POSIX compatibility
layer. Some remarks:

1. Locking doesn’t seem to be supported.
2. fifo’s (mkfifo) are not supported.
3. Hard links are not supported, only symbolic links.
4. No support for fdatasync, so we do a fsync there.
5. Sockets work in BeOS, but they are not file descriptors. Stick to the EPX _SOCKET class-

es like EPX _TCP _CLIENT _SOCKET. Never pass a socket to an ABSTRACT _FILE
_DESCRIPTOR as that will not work.
The trick is that read and write in EPX _SOCKET call recv and sendmsg. If you pass a
socket to an ABSTRACT _FILE _DESCRIPTOR, the POSIX read and write routines will
be called.

6. BeOS does not support non-blocking i/o on sockets. BeOS does have non-blocking i/o for
sockets, but it is specific for BeOS.

2.3.5 QNX

The latest version of e-POSIX was tested with QNX 6.2.1.

2.3.6 Win32

The latest version of e-POSIX was tested with Windows 2000, Service Pack 2. On Win32, Standard
C is fully supported. With e-POSIX’s abstract layer, parts of POSIX and the Single Unix Specification
are also supported. Support isn’t as extensive as using the Cygwin tools.

In this chapter:

• Why an entire reimplementation?
• Goals and guidelines
• Class structure
• Clients of this library
• Forking
• Books

3
Design notes

3.1 Why an entire reimplementation?
One might wonder why I reimplemented the entire Standard C and POSIX library when most
vendors also have classes that deal with files, the file system, signals and such. Unfortunately,
these classes are nor complete nor very portable between vendors. For someone who wants to
compile against all the major vendors —and there are good reasons to do this— there is currently
no portable solution. That’s why many portable Eiffel programs more or less contain the same code
again and again. There are some attempts to write more portable libraries, for example the Unix
File/Directory Handling Cluster by Friedrich Dominicus, but they also are not complete nor is
the implementation satisfactory. For example they usually have much logic at the C level. I wanted
only C glue code: all intelligence should be in the Eiffel code.

Another attempt is done by the Gobo cluster: it attempts to provide users with a set of classes that
work accross all Eiffel vendors by using only the native facilities offered by each implementation.
This approach has the advantage that no C compilation is necessary. The disadvantages are:

1. The contract for these classes is probably not specifiable: for which platforms and which
assumptions are the contracts valid? Are these contracts the same in all implementations?

2. It is incomplete, i.e. it doesn’t cover most of the POSIX routines.

That’s why I started to make the entire Standard C and POSIX routines available to Eiffel pro-
grammers. All these routines are nicely wrapped in classes. I spend a lot of time designing and
refactoring these, comments and improvements about its structure are very appreciated.

The advantage of making POSIX available to Eiffel programmers is that someone doesn’t need to
think about creating a set of portable file and directory classes that work on every known operating
system. POSIX is available on many platforms and for other systems there either is an emulation or
a POSIX mapping available. It’s better to reuse that, instead of reinventing work that took years to
complete.

3.2 Goals and guidelines
The goals and guidelines for this library were:

1. A complete Standard C implementation for those who didn’t have access to POSIX routines.
2. A complete POSIX implementation.
3. Do the job in such a way that it will become the official Eiffel POSIX mapping.
4. All classes should satisfy the demands posed by the query--command separation principle.

http://www.eiffel-forum.org/archive/dominicu/fdh.htm
http://www.eiffel-forum.org/archive/dominicu/fdh.htm
http://www.eiffel-forum.org/archive/dominicu/fdh.htm
http://www.eiffel-forum.org/archive/dominicu/fdh.htm

8 Class structure

5. The native Standard C and POSIX routines should be available to those who don’t want to go
through a certain class layer.

6. The names in use in the POSIX world like file descriptor or memory map are used as class names.
This should make it easy to find a class if one knows the POSIX name.

7. If a command fails, an exception code is raised. This differs from the POSIX routines where one
is expected to test for error and query the errno variable. The only exception is unlink:
when the file does not exist, no exception is raised.

8. POSIX assumptions should be made explicit. For Eiffel this means specifying explicit pre-- and
postconditions.

9. Use of constants to influence the way a method should be avoided by providing clearly named
methods. So instead of passing a constants to the POSIX _FILE. open function to open a
file read--only, one can also call open _read.

10. Attempt to create non-deferred class that refer to an entity that exists in the POSIX world. Creation
of an object is binding to that entity, or creation of that entity.

11. Names should be clear, and Eiffel--like. They should not differ in just one character. POSIX

names are also made available to ease use of this library for programmers that know POSIX well.

3.3 Class structure

e-POSIX makes available all the Standard C and POSIX headers in classes like CAPI _STDIO and
PAPI _UNISTD. More details about the header translation are in chapter 17.

However, making the plain C API available is not a very interesting addition to an Eiffel program-
mer’s toolkit. Therefore, this library’s second attempt was to make an effective OO--wrapper, while
making a careful distinction between what is available in the Standard C and what is available in
POSIX. This distinction is reflected in e-POSIX’s directory structure, see figure 3.1.

The raw Standard C API is available in src/capi, the OO--wrapper is available in src/stan-
dardc. The raw POSIX API is available in src/papi, the OO--wrapper is available in src
/posix.

Every Standard C and POSIX wrapper is derived from a common root, see also figure 3.2:

1. If a class builds upon facilities available on Standard C, its name starts with the prefix STDC_
and it inherits from STDC _BASE.

2. If a class builds upon facilities available in POSIX, its name starts with the prefix POSIX_ and it
inherits from POSIX _BASE.

3. If a class builds upon facilities available in the Single Unix Specification, its name starts with
the prefix SUS_ and it inherits from SUS _BASE. The support for the Single Unix Specification
is not yet complete, but is continually enhanced.

4. Because we live in a world dominated by Microsoft Windows, and Microsoft Windows does
not do POSIX, this would mean that many users only could use e-POSIX’s Standard C facilities.
These facilities are extremely limiting, for example there is no change directory command in
Standard C. Therefore e-POSIX makes available an abstraction layer that covers routines that
have an equivalent in POSIX and the Single Unix Specification. These classes start with the
name EPX_. They always inherit from classes starting with ABSTRACT_. These abstract
classes implement the common code. See chapter 4.3.3 for more details.
Note that by using Cygwin you have a full POSIX emulation layer on Windows. In that specific
environment you can use e-POSIX’s entire POSIX and Single Unix Specification layer.

Design notes 9

Figure 3.1 e-POSIX

directory structure

The wrapper classes should be fully command--query separated and use clear names. Often the
POSIX name, if applicable, is also made available as an alias. If this is a good thing, I’m not sure. I
hope it facilitates working with the wrapper classes if you already know POSIX.

Besides these directories, e-POSIX provides a number of extensions to the pure Standard C or POSIX

routines. These can be found in the subdirectories that start withsrc/epx. A single letter indicates
if the classes only built upon routines available in Standard C or POSIX:

1. epxc: Standard C based extensions like URI resolving, a MIME parser and XML generation.
2. epxs: Single Unix Specification based extension like an HTTP client.

3.4 Clients of this library

For client classes, two important classes are STDC _CONSTANTS and POSIX _CONSTANTS, see
figure 3.3. The wrapper classes tend to avoid having routines whose behavior drastically depends
on passed constants. But if you need to use constants, your client class can just inherit from these
classes and every Standard C and POSIX constant is available.

3.5 Forking
Implementing forking posed some interesting challenges. I started with the basic idea that every
process has a pid:

class PROCESS

10 Forking

POSIX BASE
*

STDC BASE
*

POSIX BASE
*

STDC BASE
*

ABSTRACT
*

POSIX BASE
*

ABSTRACT
*

POSIX BASE
*

Figure 3.2 Inheritance structure

STDC CONSTANTS
+

POSIX CONSTANTS
+

Figure 3.3 Standard
C and POSIX constants

feature

pid: INTEGER

end

Design notes 11

I wanted to be able to write two kinds of forking. The first one is forking a child as in:

class PARENT

inherit

POSIX_CURRENT_PROCESS

feature

make is
local

child: POSIX_CHILD_PROCESS
do

print ("My pid: ")
print (pid)
print ("%N")
fork (child)
print ("child’s pid: ")
print (child.pid)
print ("%N")
child.wait_for (True)

end

end

However, I also wanted to fork myself, because that basically is what forking is!

class PARENT

inherit

POSIX_CURRENT_PROCESS

POSIX_CHILD_PROCESS

feature

make is
do

fork (Current)
wait

end

execute is
do

-- forked code
end

12 Books

end

The above code gives a name clash, because POSIX _CURRENT _PROCESS. pid is a call to the
POSIX routine getpid, while the child’s pid is a variable, which gets a variable after forking. You
can solve this name clash yourself, but it is most easy to inherit from POSIX _FORK _ROOT, a
clash which has solved this clash already.

If you fork a child, you must wait for it. For a child process, you can use POSIX _CHILD. wait
_for, if you fork yourself, you must use POSIX _CURRENT _PROCESS. wait. The variable
waited _child _pid will be set with the pid of the child process that wait waited for.

3.6 Books
Books that have been helpful during the development of e-POSIX where (POSIX1003.1, 1996,
Plauger1991, 1991, Lewine1994, 1994), see the biography section at page 91.

In this chapter:

• Layers architecture
• Standard C
• Windows
• Introduction to the next chapters

4
Layers

4.1 Layers architecture
e-POSIX is written in such a way that it is possible to write a pure Standard C based application
(ANSI/ISO IS 9899: 1990), a pure POSIX application (Standard ISO/IEC-9945-1: 1990), or a pure
Single Unix Specification version 3 application (http://www.unix-systems.org/single
_unix_specification/). Although POSIX and the Single Unix Specification merged there
specifications, they are still kept separate in e-POSIX, because the merge happened relatively recently
and the pure POSIX functions are more very widely supported.

Based on these standards e-POSIX offers a compatibility layer. This layer offers a common framework
for people that want to write code that works on both Unix and Windows systems. The compatibility
layer uses all features that an operating system offers. If you use the network compatibility layer for
example, you need a system that supports the Single Unix Specification.

4.2 Standard C
All Standard C classes start with STDC_. They are:

1. STDC _TEXT _FILE: access text files.
2. STDC _BINARY _FILE: access binary files.
3. STC _TEMPORARY _FILE: create a temporary file, a file that is removed when it is closed or

when the program terminates.
4. STDC _CONSTANTS: access Standard C constants like error codes and such.
5. STDC _BUFFER: allocate dynamic memory.
6. STDC _ENV _VAR: access environment variables.
7. STDC _FILE _SYSTEM: delete and rename files.
8. STDC _SHELL _COMMAND: pass an arbitrary command to the native shell.
9. STDC _SYSTEM: access information about the system the program is running on.
10. STDC _CURRENT _PROCESS: access to current process related information like its standard

input, output and error streams.
11. STDC _TIME: access current time. Also can format a given time in various formats.

4.3 Windows

4.3.1 Writing portable programs

e-POSIX offers three alternatives to writing programs that run on both Unix and Windows platforms:

http://www.unix-systems.org/single_unix_specification/
http://www.unix-systems.org/single_unix_specification/
http://www.unix-systems.org/single_unix_specification/
http://www.unix-systems.org/single_unix_specification/
http://www.unix-systems.org/single_unix_specification/
http://www.unix-systems.org/single_unix_specification/
http://www.unix-systems.org/single_unix_specification/
http://www.unix-systems.org/single_unix_specification/

14 Windows

1. Write programs that only rely on Standard C. If you use only Standard C classes your program
is probably quite portable. Standard C doesn’t offer that much however.

2. Write programs that are based on POSIX. You use a POSIX emulator to compile and run your
program unchanged on Windows. The only thing you have to be aware of is the distinction
between binary and text files.

3. Write programs that are based upon e-POSIX’s EPX_XXXX layer. This layer is based on e-
POSIX’s ABSTRACT_XXXX classes, that covers code that is common between Windows and
a POSIX platform.
Previous versions of e-POSIX used a factory class approach to access this common code. This is
no longer needed. The ABSTRACT_XXXX are maded effective through EPX_XXXX classes
when compiling for Windows or for POSIX.

The following sections offer more details about the last two approaches.

4.3.2 Compiling POSIX programs in Windows

You can also use a very large subset of POSIX under Windows with a POSIX emulator. I’ve tested
this using SmartEiffel and Cygwin’s freely available emulator. Here the steps:

1. Download the Cygwin toolkit from http://sources.redhat.com/cygwin.
2. Set the compiler in compiler.se to gcc. Leave the system in system.se to Windows.
3. Configure e-POSIX as described in 1.2 and create libeposix_se.a

A few things are not available under Cygnus’ POSIX emulation:

1. POSIX _FILE _SYSTEM. create _fifo is not supported. Any attempt to use it will return
ENOSYS. I’m not sure if returning an error is the correct solution for applications that require
POSIX compatibility, because you are only warned at run--time. Another solution would be to
include a call to mkfifo and if you use it, let the linker complain.

2. There is no locking, so calls to POSIX _FILE _DESCRIPTOR. get _lock and such will
fail.

3. Certain POSIX tests assume that a more Unix like environment is available, so not all tests will
run. For example the standard Cygwin distribution doesn’t have a more utility. If you make a
symbolic link from less to more the child process test will run.

4. The current list of implemented functions is available from http://sources.redhat.
com/cygwin/faq/faq_3.html#SEC17.

4.3.3 Native Windows

Previous versions of e-POSIX used a factory class approach to access Windows or POSIX specific
code. This is obsolete.

If you want to write code that is portable between Windows and POSIX use the EPX_XXXX class
layer. For example you can use the EPX _FILE _DESCRIPTOR to use file descriptors that are
completely portable between these two OSes. Use EPX _FILE _SYSTEM to have access to file
system specific code to change directories or get the temporary directory.

In general you can replace the POSIX_ prefix with EPX_ to compile most of the examples presented
in the previous POSIX specific chapters. The classes currently available in the EPX_XXXX layer
are:

http://sources.redhat.com/cygwin
http://sources.redhat.com/cygwin
http://sources.redhat.com/cygwin
http://sources.redhat.com/cygwin
http://sources.redhat.com/cygwin
http://sources.redhat.com/cygwin
http://sources.redhat.com/cygwin/faq/faq_3.html#SEC17
http://sources.redhat.com/cygwin/faq/faq_3.html#SEC17
http://sources.redhat.com/cygwin/faq/faq_3.html#SEC17
http://sources.redhat.com/cygwin/faq/faq_3.html#SEC17
http://sources.redhat.com/cygwin/faq/faq_3.html#SEC17
http://sources.redhat.com/cygwin/faq/faq_3.html#SEC17
http://sources.redhat.com/cygwin/faq/faq_3.html#SEC17
http://sources.redhat.com/cygwin/faq/faq_3.html#SEC17
http://sources.redhat.com/cygwin/faq/faq_3.html#SEC17
http://sources.redhat.com/cygwin/faq/faq_3.html#SEC17
http://sources.redhat.com/cygwin/faq/faq_3.html#SEC17

Layers 15

• EPX _CURRENT _PROCESS.
• EPX _EXEC _PROCESS.
• EPX _FILE _DESCRIPTOR.
• EPX _FILE _SYSTEM.
• EPX _PIPE.

Figure one shows hoe the EPX _FILE _DESCRIPTOR class is derived from ABSTRACT _FILE
_DESCRIPTOR. Both Windows and POSIX have an effective EPX _FILE _DESCRIPTOR class.
Classes as POSIX _FILE _DESCRIPTOR implement POSIX specific functionality for a file de-
scriptor.

POSIX BASE
*

ABSTRACT FD
*

WINDOWS BASE
*

EPX FD
+

EPX FD
+

POSIX FD
+

WINDOWS FD
+

Figure 4.1 How EPX_XXXX classes are related to the POSIX and Windows classes

An example of using the EPX _FILE _SYSTEM class is shown below:

class EX_EPX1

inherit

EPX_FILE_SYSTEM

creation

make

16 Introduction to the next chapters

feature

make is
local

dir: STRING
do

print ("Current directory: ")
dir := current_directory
print (dir)
print ("%N")
change_directory ("..")
change_directory (dir)
make_directory ("abc")
rename_to ("abc", "def ")
remove_directory ("def ")

end

end

In �� all abstract classes are listed. There deferred features are made effective in the EPX class for
the operating system you’re compiling for.

4.4 Introduction to the next chapters
The following chapters are topic based: they discuss how to work with files for example and show
examples for all layers and give hints what is and what isn’t supported in each layer.

Instead of describing every class and every feature, I decided to show short and simple examples of
common ways to use the various e-POSIX classes. Most examples assume a POSIX or Single Unix
Specification environment. If you don’t have POSIX available, you can try to replace the POSIX_
prefix by STDC_. Most of the time the POSIX classes are based on the Standard C classes.

If you are looking for more examples, you might take a look at the classes in the test_suite
directory. These classes should demonstrate and test almost every feature available in the POSIX

classes.

In this chapter:

• Introduction
• Allocating memory
• Allocating memory
• Using shared memory
• Memory maps

5
Working with

memory

5.1 Introduction
e-POSIX has several classes that allocate memory. The main class is STDC _BUFFER (or the
equivalent POSIX _BUFFER). This class allocates a memory block that isn’t moved by the garbage
collector. This is very useful for an Eiffel compiler that has a moving garbage collector.

You can also get access to shared memory using POSIX _SHARED _MEMORY.

5.2 Allocating memory
You can dynamically allocate memory with STDC _BUFFER which works just like POSIX
_BUFFER.

class EX_MEM2

creation

make

feature

make is
local

mem: STDC_BUFFER
byte: INTEGER

do
create mem.allocate_and_clear (128)
mem.poke_uint8 (2, 57)
byte := mem.peek_uint8 (2)
mem.resize (256)
mem.deallocate

end

end
With the feature STDC _BUFFER. allocate _and _clear memory is allocated and cleared
to all zeros.

STDC _BUFFER contains many routines to read bytes and strings from the memory it manages like
peek _int16, peek _uint16, or peek _int32. It supports reading and writing 16 and 32

18 Allocating memory

bit integers in little and big endian order with routines as peek _int16 _big _endian, peek
_int16 _little _endian, and poke _int32 _big _endian.

5.3 Allocating memory
Allocating dynamic memory is very useful, but not portably available for Eiffel programmers. With
POSIX _BUFFER memory can be allocated, read and written to.

class EX_MEM

creation

make

feature

make is
local

mem: POSIX_BUFFER
byte: INTEGER

do
create mem.allocate (256)
mem.poke_uint8 (2, 57)
byte := mem.peek_uint8 (2)
mem.resize (512)
mem.deallocate

end

end

For more information about the dynamic memory class, see section 5.2.

5.4 Using shared memory
You can use shared memory to exchange data between different processes. It’s dependent on your
POSIX version if this is supported, so check for this capability explicitly!

class EX_SHARED_MEM1

inherit

POSIX_SYSTEM

POSIX_CURRENT_PROCESS

POSIX_FILE_SYSTEM

creation

Working with memory 19

make

feature

make is
local

fd: POSIX_SHARED_MEMORY
do

if not supports_shared_memory_objects then
stderr.puts ("Shared memory objects not supported.%N")
exit_with_failure

end

create fd.create_read_write ("/test.berend")
fd.write_string ("Hello world.%N")
fd.close
unlink_shared_memory_object ("/test.berend")

end

end

Make sure you always start a shared memory object with a slash. Else the behaviour is undefined
or processes might not be able to find your shared memory.

There is not yet an abstract layer implementing shared memory, but you can useWINDOWS_PAGING
_FILE _SHARED _MEMORY on Windows to get a similar effect.

5.5 Memory maps

You can map a file to memory using POSIX _MEMORY _MAP.

class EX_MEMORY_MAP1

inherit

POSIX_SYSTEM

POSIX_CURRENT_PROCESS

creation

make

feature

make is
local

20 Memory maps

fd: POSIX_FILE_DESCRIPTOR
map: POSIX_MEMORY_MAP
byte: INTEGER
correct: BOOLEAN

do
if supports_memory_mapped_files then

-- Open a file.
create fd.open_read_write ("ex_memory_map1.e")

-- Create memory map.
create map.make_shared (fd, 0, 64)

-- Read a byte from the mapping.
byte := map.peek_uint8 (2)
correct := byte = (’a’).code
if not correct then
print ("Oops.%N")

end

-- Cleanup.
map.close
fd.close

end
end

end

There is no equivalent abstract layer class for memory mapping to support Windows yet.

In this chapter:

• Introduction
• Standard C notes
• Compatibility with Gobo
• Working with streams
• Working with streams using Standard C only
• Working with file descriptors
• Windows systems: binary mode versus text mode

6
Working with

files

6.1 Introduction
e-POSIX offers two different file classes: Standard C stream based and POSIX file descriptor classes.
The main difference between stream and descriptor based classes is that the stream classes offer
read and write caching. Output is not immediately written to disk or network for example.

6.2 Standard C notes
If you don’t have access to a POSIX compatible system, you can use the underlying Standard C classes.
Standard C is quite restricted in certain respects: you cannot change directories for example. On
the other hand, this library gives you access to all Standard C routines, so you can use what’s there
and write an extremely portable program.

6.3 Compatibility with Gobo

Since version 2.0 e-POSIX is built upon foundations laid in Gobo. e-POSIXś STDC _FILE/POSIX
_FILE and ABSTRACT _FILE _DESCRIPTOR are implementations of KI _CHARACTER
_INPUT _STREAM and KI _CHARACTER _OUTPUT _STREAM.

The e-POSIX class ABSTRACT _FILE _DESCRIPTOR has support for non-blocking i/o, see
section 7.3. Gobo’s KI _CHARACTER _INPUT _STREAM expects blocking i/o however. If
you call ABSTRACT _FILE _DESCRIPTOR. read _string you will call the routine that
has support for non-blocking i/o. Due to Eiffel’s renaming mechanism, ABSTRACT _FILE
_DESCRIPTOR will behave blocking when it is called as if it was a KI _CHARACTER _INPUT
_STREAM.

6.4 Working with streams

The basic class for working with files, or streams as they are also called, is POSIX _FILE. There
are two kinds of files: POSIX _TEXT _FILE and POSIX _BINARY _FILE. According to
the POSIX standard, there is no distinction between binary and text files. But on certain systems
you must use POSIX programs through an emulation layer. For example, on Windows Cygwin is
a well--known POSIX emulator. To maintain compatibility with other Windows programs, Cygwin

22 Working with streams

distinguishes between text and binary files. If you use Cygwin to compile your POSIX programs,
this distinction is therefore still important.

The first example shows how to open a text file, see also the corresponding BON diagram in
figure 6.1.

STDC FILE
*

STDC TEXT FILE
+

POSIX FILE
*

POSIX TEXT FILE
+

EX FILE1

Figure 6.1 BON diagram of opening a text file.

class EX_FILE1

creation

make

feature

make is
local
file: POSIX_TEXT_FILE

do
create file.open_read ("/etc/group")
from
file.read_line

until
file.eof

Working with files 23

loop
print (file.last_string)
print ("%N")
file.read_line

end
file.close

end

end

It simply opens a file for reading and prints every line in it. Note that the line read does not include
the end-of-line character. This is a change in behaviour from pre 2.0 eposix versions.

[POSIX_FILE] has two functions that read strings. These are read _line and read _string.
read _line only returns when it has read an end-of-line character. It it has to read a 2GB
characters to reach that, it will return a 2GB string. read _string returns a string with the given
number of characters, or less if the end of the file is reached. These two functions have one other
difference as well: read _line removes the end-of-line character(s), while read _string
returns the raw string, including end-of-line characters and such.

At the end of the example, the file is closed. You don’t need to explicitly close a file as it will be
closed when your object is garbaged collected. But I think it’s a good thing not to rely or depend
on this, but to close your external resources as soon as you’re done using them. For example many
systems have easily reached limits on the number of files a process can have open.

Reading binary files is almost the same loop, only you read it in chunks:

class EX_FILE2

creation

make

feature

chunk_size: INTEGER is 512

make is
local

file: POSIX_BINARY_FILE
buffer: POSIX_BUFFER

do
create file.open_read ("/bin/sh")
create buffer.allocate (chunk_size)
from

file.read_buffer (buffer, 0, chunk_size)
until

file.eof
loop

file.read_buffer (buffer, 0, chunk_size)

24 Working with streams

end
file.close

end

end
This example uses a more safe version of buffer reading, POSIX _FILE. read _buffer. There
is an untyped variant POSIX _FILE. read which accepts a pure pointer. There is no need to
mention that you need to watch buffer overflows carefully with this last one!

Correctly looping through files, takes care. For example the following loop is wrong:

class EX_WRONG1

creation

make

feature

make is
local

file: POSIX_TEXT_FILE
do

create file.open_read ("/etc/group")
from
until

file.eof
loop

file.read_string (256)
print (file.last_string)

end
file.close

end

end
After POSIX _TEXT _FILE. read _string, eof might be True. But the precondition for
last _string is that eof is false. You will make an unnecessary extra loop. The correctly
coded variant is:

class EX_WRONG2

creation

make

feature

make is
local

Working with files 25

file: POSIX_TEXT_FILE
do

create file.open_read ("/etc/group")
from
until

file.eof
loop

file.read_string (256)
if not file.eof then

print (file.last_string)
end

end
file.close

end

end

I myself prefer the first example, as the check is only in the until part, and not repeated in the loop.

The following examples shows how a binary file is created and a string is written to it.

class EX_FILE3

inherit

POSIX_FILE_SYSTEM

creation

make

feature

make is
local

file: POSIX_BINARY_FILE
do

create file.create_write (expand_path ("$HOME/myfile.tmp"))
file.write_string ("hello world.%N")
file.close

end

end

Depending on the platform you are running a backslash is turned into a slash or vice versa.

This example also demonstrates how path names —file and directory names— can be expanded: if
you call POSIX _FILE _SYSTEM. expand _path, any environment variables in the path are
expanded. Backslashes and slashes are always translated, but environment variable expansion has
to be done explicitly.

26 Working with streams using Standard C only

You can move the file pointer with two different methods: POSIX _FILE. seek and set
_position. The seek works with files up to 2 GB, set _position has no such limits. Use
tell to get a position that can be passed to seek. Use get _position to get a position that
can be passed to set _position.

class EX_FILE5

creation

make

feature

make is
local

file: POSIX_BINARY_FILE
pos1: INTEGER
pos2: STDC_FILE_POSITION

do
create file.create_read_write ("test.bin")
file.write_string ("one")
pos1 := file.tell
pos2 := file.get_position
file.write_string ("two")
file.seek (pos1)
-- or file.set_position (pos2)
file.read_string (3)
if not file.last_string.is_equal ("two") then

print ("unexpected read.%N")
end
file.close

end

end

6.5 Working with streams using Standard C only
Working with text files is equal to the POSIX classes, only you use the STDC prefix.

class EX_FILE4

creation

make

feature

Working with files 27

make is
local
file: STDC_TEXT_FILE

do
create file.open_read ("/etc/group")
from
file.read_line

until
file.eof

loop
print (file.last_string)
print ("%N")
file.read_line

end
file.close

end

end

Its BON diagram, see figure 6.2 is therefore quite equal to the POSIX one, see figure 6.1.

STDC FILE
*

STDC TEXT FILE
+

EX FILE3

Figure 6.2 BON diagram of
opening a Standard C text file.

6.6 Working with file descriptors
The file descriptors classes are quite equal to the file classes. The following example opens a file
using POSIX _FILE _DESCRIPTOR and reads the first 64 bytes.

class EX_FD1

creation

make

28 Working with file descriptors

feature

make is
local

fd: POSIX_FILE_DESCRIPTOR
do

create fd.open_read ("/etc/group")
fd.read_string (64)
print (fd.last_string)
fd.close

end

end

Unlike POSIX _TEXT _FILE, there is no easy way to detect end of line and end of file conditions.
However, a file descriptor can easily be turned into a file as the following example demonstrates.

class EX_FD2

creation

make

feature

make is
local

fd: POSIX_FILE_DESCRIPTOR
file: POSIX_TEXT_FILE

do
create fd.open_read ("/etc/group")
create file.make_from_file_descriptor (fd, "r")
from

file.read_string (256)
until

file.eof
loop

print (file.last_string)
file.read_string (256)

end
file.close
fd.close

end

end

A file descriptor can also be used to lock, unlock or test for locks on a given file as the following
example demonstrates. See also the accompanying BON diagram in figure 6.3.

class EX_FD4

Working with files 29

creation

make

feature

make is
local

some_lock,
lock: POSIX_LOCK
fd: POSIX_FILE_DESCRIPTOR

do
create fd.create_read_write ("test.tmp")
fd.write_string ("Test")

create lock.make
lock.set_allow_read
lock.set_start (2)
lock.set_length (1)
some_lock := fd.get_lock (lock)
if some_lock /= Void then

print ("There is already a lock?%N")
end

-- create exclusive lock
lock.set_allow_none
lock.set_start (0)
lock.set_length (4)
fd.set_lock (lock)

fd.close
end

end

POSIX _FILE _DESCRIPTOR. get _lock is command--query separated, that is why it returns
a new lock when queried and there is a lock. If there is no lock get _lock returns Void. The
passed lock is not modified.

A file descriptor also gives you access to the attached terminal, if any. The following example
demonstrates how to read a password without the password appearing on the screen.

class EX_FD3

inherit

POSIX_CURRENT_PROCESS

creation

30 Windows systems: binary mode versus text mode

POSIX BASE
*

POSIX FILE DESCRIPTOR
+

POSIX LOCK
+

EX FD4

Figure 6.3 BON diagram of locking a portion of a file.

make

feature

make is
do

print ("Password: ")
stdout.flush

-- turn off echo
fd_stdin.terminal.set_echo_input (False)
fd_stdin.terminal.apply_flush

-- read password
fd_stdin.read_string (256)

-- turn echo back on
fd_stdin.terminal.set_echo_input (True)
fd_stdin.terminal.apply_now

print ("%NYour password was: ")
print (fd_stdin.last_string)

end

end

6.7 Windows systems: binary mode versus text mode
If you are using Unix exclusively, you can skip this section.

Working with files 31

Independent of what layer you use to write Windows programs, you have to deal with binary and
text modes. And if you usually write Unix programs and want them to work on Windows too, you
have to bother with it too.

On Windows, each line of a text files ends with a carriage return character followed by a line feed
character. If you use a C text stream to read a file on Windows, a trick is employed: every occurrence
of "%R%N" is replaced by a single "%N". If The same happens when writing to a text stream: you
just have to write a single "%N" and the C run-time code replaces this by

So make sure you are using the proper classes if you use streams. Use STDC _TEXT _FILE if you
want to read and write text files and use STDC _BINARY _FILE to read and write binary files.

File descriptors are binary only. So any descendant from ABSTRACT _FILE _DESCRIPTOR
treats input and output as binary and does no translation whatsoever. If you use ABSTRACT _FILE
_DESCRIPTOR. read _line to read lines, the end-of-line character may either be a "%R%N" or
just a end-of-line characters regardless of the platform. So reading a file with Windows end-of-line
characters on Windows or Unix will work exactly the same.

There is no explicit support for creating text files using file descriptors with the proper Windows
end of file characters. Use either STDC _TEXT _FILE to create platform dependent end-of-lines
or write the proper end-of-line characters yourself.

This discussion also applies to standard input and output. If you want to use binary standard input
or binary standard output, use the file descriptors available in EPX _CURRENT _PROCESS as fd
_stdin and fd _stdout. If you use stdin and stdout you can handle text files only on
Windows. On Unix it does not matter.

For Cygwin users the story is somewhat more difficult it seems. File descriptors can be text or
binary. The default is binary however. The following information can be helpful to get the binary
versus text file distinction correct:

• Mount the volume in binary mode.
• Set the environment variable CYGWIN to ‘binary’.

More information about Cygwin and CR/LF handling can be found at http://sources.
redhat.com/cygwin/faq/faq_toc.html#TOC62.

http://sources.redhat.com/cygwin/faq/faq_toc.html#TOC62
http://sources.redhat.com/cygwin/faq/faq_toc.html#TOC62
http://sources.redhat.com/cygwin/faq/faq_toc.html#TOC62
http://sources.redhat.com/cygwin/faq/faq_toc.html#TOC62
http://sources.redhat.com/cygwin/faq/faq_toc.html#TOC62
http://sources.redhat.com/cygwin/faq/faq_toc.html#TOC62
http://sources.redhat.com/cygwin/faq/faq_toc.html#TOC62
http://sources.redhat.com/cygwin/faq/faq_toc.html#TOC62
http://sources.redhat.com/cygwin/faq/faq_toc.html#TOC62
http://sources.redhat.com/cygwin/faq/faq_toc.html#TOC62
http://sources.redhat.com/cygwin/faq/faq_toc.html#TOC62

In this chapter:

• Redirecting stderr to stdout
• Talking to your modem
• Non-blocking I/O
• Asynchronous I/O

7
Working with

files: advanced
topics

7.1 Redirecting stderr to stdout
If you want to redirect all output written by your program or any child you spawn to stdout, you can
use the POSIX _FILE _DESCRIPTOR. make _as _duplicate call:

class EX_REDIRECT1

inherit

POSIX_CURRENT_PROCESS

creation

make

feature

make is
do

-- flush stream buffers, else output may be in wrong order
stdout.flush
stderr.flush

fd_stderr.make_as_duplicate (fd_stdout)
-- all output written to stderr goes to stdout now

end

end

It’s a good idea to call this at the beginning of your program, before you have written anything to
stderr or stdout. If you do that, you don’t have to flush the stream buffers.

7.2 Talking to your modem
With e-POSIX you can talk to your modem. The implementation contains not all the details to write
a full--featured program as minicom, but they will be added upon request.

Working with files: advanced topics 33

The following example tries to talk to your modem —which is expected to be at /dev/modem—
and queries its manufacturer.

class EX_MODEM

inherit

POSIX_CURRENT_PROCESS

creation

make

feature

make is
local

modem: POSIX_FILE_DESCRIPTOR
term: POSIX_TERMIOS

do
-- assume there is a /dev/modem device
create modem.open_read_write ("/dev/modem")
term := modem.terminal
term.flush_input
print ("Input speed: ")
print (term.speed_to_baud_rate (term.input_speed))
print ("%N")
print ("Output speed: ")
print (term.speed_to_baud_rate (term.output_speed))
print ("%N")

term.set_input_speed (B9600)
term.set_output_speed (B9600)
term.set_receive (True)
term.set_echo_input (False)
term.set_echo_new_line (False)
term.set_input_control (True)
term.apply_flush

-- expect modem to echo commands
modem.write_string ("AT%N")
modem.read_string (64)
print ("Command: ")
print (modem.last_string)
modem.read_string (64)
print ("Response (expect ok): ")
print (modem.last_string)
modem.write_string ("ATI0%N")

34 Non-blocking I/O

modem.read_string (64)
print ("Command: ")
print (modem.last_string)
modem.read_string (64)
print ("Response: ")
print (modem.last_string)
modem.close

end

end

POSIX BASE
*

POSIX FILE DESCRIPTOR
+

POSIX TERMIOS
+

EX MODEM

Figure 7.1 BON diagram of talking to a modem.

7.3 Non-blocking I/O
e-POSIX supports non-blocking i/o on its file descriptor classes, i.e. the descendants of ABSTRACT
_FILE _DESCRIPTOR. Use is _blocking _io to query if the descriptor blocks on read or
write if there is no data. Use set _blocking _io to change the behavior.

Use supports _nonblocking _io to query if the behavior with respect to blocking i/o can be
changed. On Windows file i/o must be blocking. Only sockets on Windows can be non-blocking.
On Unix all descriptors support non-blocking i/o.

See also section 6.3 for non-blocking i/o when e-POSIX is used as a plugin for classes that expect a
KI _CHARACTER _INPUT _STREAM. In such cases e-POSIX reverts to blocking i/o, even when
non-blocking i/o has been enabled.

7.4 Asynchronous I/O
e-POSIX supports the asynchronous i/o features of POSIX. Not all Free Unices seem to support this
feature, nor does their support seems to be error free.

Take a look at the following example:

class EX_ASYNC1

Working with files: advanced topics 35

creation

make

feature

make is
local

fd: POSIX_FILE_DESCRIPTOR
request: POSIX_ASYNC_IO_REQUEST

do
create fd.create_read_write ("test.tmp")
create request.make (fd)
request.set_offset (0)
request.write_string ("hello world.")
request.wait_for
fd.close

end

end

The basic idea is that each asynchronous request is a separate object, modeled by POSIX _ASYNC
_IO _REQUEST. You prepare it through calls like set _buffer, set _count and set
_offset. You execute the request by calling read or write.

You can wait for the request to be complete by calling wait _for. It should be possible to force
open requests to be synchronized to the disk with synchronize, but this does give strange results
on Linux. So far I haven’t got access to a machine that also implements asynchronous i/o to test if
my code is correct.

In this chapter:

• Portability
• Standard C
• POSIX

8
Working with

the file system

8.1 Portability
Use the EPX_ classes to write code that is portable between POSIX systems and Windows.

8.2 Standard C
Standard C doesn’t offer much for file systems. You can only delete and rename files.

class EX_DIR5

inherit

STDC_FILE_SYSTEM

creation

make

feature

make is
do

rename_to ("qqtest.abc.tmp", "qqtest.xyz.tmp")
remove_file ("qqtest.xyz.tmp")

end

end

The BON diagram is shown in figure 8.1.

8.3 POSIX
POSIX defines many commands to navigate a file system. They’re made available by the POSIX
_FILE _SYSTEM. The following example navigates to the user’s home directory, create a directory
and removes it.

class EX_DIR1

inherit

Working with the file system 37

STDC BASE
*

STDC FILE SYSTEM
+

EX DIR5

Figure 8.1 BON diagram of deleting and
renaming files with Standard C.

POSIX_FILE_SYSTEM

creation

make

feature

make is
do

change_directory (expand_path ("˜"))
make_directory ("qqtest.xyz.tmp")
remove_directory ("qqtest.xyz.tmp")

end

end

To get access to the file system, inheriting from the POSIX _FILE _SYSTEM class is easiest.

There are also lots of functions to test for existence, readability or writability of files. Use is
_modifiable to test if a file is readable and writable.

class EX_DIR2

38 POSIX

inherit

POSIX_FILE_SYSTEM

creation

make

feature

make is
local

perm: POSIX_PERMISSIONS
do

print_info (is_existing ("/tmp"), "existing")
print_info (is_executable ("/bin/ls"), "executable")
print_info (is_readable ("/etc/passwd"), "readable")
print_info (is_writable ("/etc/passwd"), "writable")
print_info (is_modifiable ("/etc/passwd"), "readable and writable")

perm := permissions("/etc/passwd")

if perm.allow_group_read then
print ("Group is allowed to read /etc/passwd.%N")

else
print ("Group is not allowed to read /etc/passwd.%N")

end

if perm.allow_anyone_read_write then
print ("Anyone is allowed to read file.tmp.%N")

else
print ("Anyone is not allowed to read file.tmp.%N")

end

end

print_info (ok: BOOLEAN; what: STRING) is
do

print ("is_")
print (what)
print (" returned ")
print (ok)
print (".%N")

end

end

Working with the file system 39

Be aware that POSIX _FILE _SYSTEM. is _readable uses the real user and group IDs instead
of the effective ones.

As can be seen in the above example, one can test for the permissions of a file using the POSIX
_PERMISSIONS class. A new permissions class is created for every POSIX _FILE _SYSTEM.
permissions call, so it is best to cache this object. If the permissions change on the file
system, this class does not reflect reality anymore, because it caches the permissions. Use POSIX
_PERMISSIONS. refresh to update the contents. Use set _allow _group _write, set
_allow _anyone _read and such to set permissions.

e-POSIX also gives you access to the stat function using the POSIX _STATUS class.

class EX_DIR4

inherit

POSIX_FILE_SYSTEM

creation

make

feature

make is
local

stat: POSIX_STATUS
do

stat := status ("/etc/passwd")
print ("size: ")
print (stat.size.out)
print (".%N")
print ("uid: ")
print (stat.permissions.uid)
print (".%N")

end

end

The POSIX _STAT, and through it POSIX _PERMISSIONS, are also returned by POSIX _FILE
_DESCRIPTOR. status.

Browsing a directory can be done by allocated a POSIX _DIRECTORY class through the POSIX
_FILE _SYSTEM. browse _directory feature:

class EX_DIR3

inherit

POSIX_FILE_SYSTEM

40 POSIX

creation

make

feature

make is
local

dir: POSIX_DIRECTORY
do

from
dir := browse_directory (".")
dir.start

until
dir.exhausted

loop
print (dir.item)
print ("%N")
dir.forth

end
dir.close

end

end

As can be seen, POSIX _DIRECTORY follows EiffelBase conventions.

When browsing a directory, all entries in that directory are returned. You might want to be interested
only in certain files. e-POSIX has the ability to define arbitrary filters. Standard e-POSIX comes with
an extension filter that only shows files with a certain extension:

class EX_DIR6

inherit

POSIX_FILE_SYSTEM

creation

make

feature

make is
local

dir: POSIX_DIRECTORY
do

from
dir := browse_directory (".")

Working with the file system 41

dir.set_extension_filter (".e")
dir.start

until
dir.exhausted

loop
print (dir.item)
print ("%N")
dir.forth

end
dir.close

end

end

In this chapter:

• Introduction
• Executing a child command
• Catching a signal with Standard C
• Catching a signal with POSIX
• General wait for child handler
• Forking a child process

9
Working with

processes

9.1 Introduction
This chapter discusses starting processes, either by executing new ones or forking the current one.
It also describes support for process communication using signals.

9.2 Executing a child command

Any command line can be executed by using the POSIX _SHELL _COMMAND class. Just pass a
command line and execute it.

class EX_CMD

creation

make

feature

make is
local

command: POSIX_SHELL_COMMAND
do

create command.make ("/bin/ls *")
command.execute
print ("Exit code: ")
print (command.exit_code)
print ("%N")

end

end

Often one wants to redirect the output of the program that is being executed. For such cases use the
POSIX _EXEC _PROCESS class.

class EX_EXEC1

inherit

Working with processes 43

POSIX_CURRENT_PROCESS

creation

make

feature

make is
local
ls: POSIX_EXEC_PROCESS

do
-- list contents of current directory
create ls.make_capture_output ("ls", <<"-1", ".">>)
ls.execute
print ("ls pid: ")
print (ls.pid)
print ("%N")
from
ls.stdout.read_string (512)

until
ls.stdout.eof

loop
print (ls.stdout.last_string)
ls.stdout.read_string (512)

end

-- close captured io
ls.stdout.close

-- wait for process
ls.wait_for (True)

end

end

Besides capturing output, you can also capture the standard input and standard error of the executed
process.

It is important to wait for the child that has been executed at some point in time, just like any POSIX

would have to do. If you do not wait for a child process, memory in the kernel is not released and
eventually you would run out of processes. Also, after the POSIX _EXEC _PROCESS. wait
_for command, the exit code of the process becomes available.

9.3 Catching a signal with Standard C
You can catch signals with Standard C. The following example demonstrates a program that can be
safely interrupted by pressing Ctrl+C:

44 Catching a signal with Standard C

class EX_SIGNAL3

inherit

EPX_CURRENT_PROCESS

STDC_CONSTANTS

STDC_SIGNAL_HANDLER

creation

make

feature

handled: BOOLEAN

make is
local
signal: STDC_SIGNAL

do
create signal.make (SIGINT)
signal.set_handler (Current)
signal.apply

print ("Wait 10s or press Ctrl+C.%N")
sleep (10)
if handled then
print ("Ctrl+C pressed.%N")

else
print ("Ctrl+C not pressed.%N")

end
end

signalled (signal_value: INTEGER) is
do
handled := True

end

end

As Standard C doesn’t have a sleep command, this program uses EPX _CURRENT _PROCESS to
get either the sleep from POSIX or from Windows.

More explanation about the program itself can be found in section 9.4.

Working with processes 45

9.4 Catching a signal with POSIX

Every class can become a signal handler by inheriting from POSIX _SIGNAL _HANDLER. Im-
plement the signalled method as that is the function that is called when the signal occurs. Use
POSIX _SIGNAL. set _handler to make your class a signal handler and call apply to start
receiving signals when they occur.

The following examples demonstrates a program that can be safely interrupted by pressing Ctrl+C:

class EX_SIGNAL1

inherit

POSIX_CURRENT_PROCESS

POSIX_CONSTANTS

POSIX_SIGNAL_HANDLER

creation

make

feature

handled: BOOLEAN

make is
local

signal: POSIX_SIGNAL
do

create signal.make (SIGINT)
signal.set_handler (Current)
signal.apply

print ("Wait 30s or press Ctrl+C.%N")
sleep (30)
if handled then

print ("Ctrl+C pressed.%N")
else

print ("Ctrl+C not pressed.%N")
end

end

signalled (signal_value: INTEGER) is
do

handled := True
end

46 General wait for child handler

end

All precautions and warnings when handling signals in C apply equally well in Eiffel of course.
While in a signal handler, the signal will not be delivered again. CallSTDC_SIGNAL_HANDLER.
reestablish to make your signal handler interruptable.

You can write a single signal handler, that handles multiple signals. This makes it possible to
have signal handling code in just one place. Create a class that inherits from POSIX _SIGNAL
_HANDLER. Pass this class to the POSIX _SIGNAL. set _handler for every signal you want
to catch. The signal value is passed as parameter to POSIX _SIGNAL _HANDLER. signalled,
so you can write an inspect statement based on the value.

9.5 General wait for child handler
If you do not want to wait for every child process explicitly, you can write a simple SIGCHLD
handler that just does a wait (I found this idea in (Stevens, 1998)):

class EX_SIGNAL2

inherit

POSIX_CURRENT_PROCESS

POSIX_CONSTANTS

POSIX_SIGNAL_HANDLER

creation

make

feature

make is
local

signal: POSIX_SIGNAL
do

create signal.make (SIGCHLD)
signal.set_handler (Current)
signal.apply

-- spawn child processes here
-- you dont have to wait for them

end

signalled (signal_value: INTEGER) is
do

wait
end

Working with processes 47

end

In Unix 98 you should be able to set the ignore handler for this signal. In pure POSIX systems the
behaviour of the ignore handler is unspecified.

9.6 Forking a child process
Forking is very easy with this Eiffel POSIX implementation. The steps:

1. Write a child by inheriting from POSIX _FORK _ROOT and implementing its execute
method.

2. The class that will do the forking, should inherit from POSIX _CURRENT _PROCESS.
3. Pass the child to the inherited feature POSIX _CURRENT _PROCESS. fork and the forking

has begun.

POSIX CURRENT PROCESS POSIX CHILD PROCESS
*

POSIX TEXT FILE
+

POSIX FORK ROOT
*

FORK CHILD
*

EX FORK1

Figure 9.1 BON diagram of forking a child process.

The following class shows the process that forks the child.

class

EX_FORK1

inherit

48 Forking a child process

POSIX_CURRENT_PROCESS

POSIX_FILE_SYSTEM

creation

make

feature

make is
local

reader: POSIX_TEXT_FILE
stop_sign: BOOLEAN
child: FORK_CHILD

do
-- necessary for SmallEiffel before -0.75 beta 7
ignore_child_stop_signal

unlink ("berend.tmp")
create_fifo ("berend.tmp", S_IRUSR + S_IWUSR)
create child
fork (child)

-- we will now block until file is opened for writing
create reader.open_read ("berend.tmp")
from

stop_sign := False
until

stop_sign
loop

reader.read_string (128)
print (reader.last_string)
stop_sign := equal(reader.last_string, "stop%N")

end
reader.close

-- now wait for the writer to terminate
child.wait_for (True)

unlink ("berend.tmp")
end

end

This class just displays anything that the writer, the child class, writes to the FIFO. When it recognizes
stop, the reader stops after waiting for the child it has spawned. Note that this is very important!

Working with processes 49

Wait for any child you have spawned else you might get spurious errors if the process exits and a
child has not yet finished.

The following class shows the forked child.

class FORK_CHILD

inherit

POSIX_FORK_ROOT

feature

execute is
local

writer: POSIX_TEXT_FILE
do

create writer.open_append ("berend.tmp")
writer.write_string ("first%N")
writer.write_string ("stop%N")
writer.close

-- we give the reader some time to process these messages
sleep (10)

end

end

In this chapter:

• Current time
• Accessing environment variables
• Capabilities

10
Querying the

operating sys-
tem

10.1 Current time
e-POSIXhas a very complete class to work with times. A time can be set from the current time
by using POSIX _TIME. make _from _now. Before a time can be printed, it needs to be
converted to either local time or UTC. Do this by calling to _local or to _utc. Date and times
can be printed using features as default _format, local _date _string, local _time
_string or a custom format through format.

class EX_TIME1

creation

make

feature

make is
local

time1,
time2: POSIX_TIME

do
create time1.make_from_now
time1.to_local
print_time (time1)
time1.to_utc
print_time (time1)
create time2.make_time (0, 0, 0)
print_time (time2)
create time2.make_date_time (1970, 10, 31, 6, 55, 0)
time2.to_utc
print_time (time2)

if time2 < time1 then
print ("time2 is less than time1 as expected.%N")

else
print ("!! time2 is not less than time1.%N")

Querying the operating system 51

end
end

print_time (time: POSIX_TIME) is
do

print ("Date: ")
print (time.year)
print ("-")
print (time.month)
print ("-")
print (time.day)
print (" ")
print (time.hour)
print (":")
print (time.minute)
print (":")
print (time.second)
print ("%N")
print ("Weekday: ")
print (time.weekday)
print ("%N")
print ("default string: ")
print (time.default_format)
print ("%N")

end

end

10.2 Accessing environment variables

Standard C supports reading environment variables with STDC _ENV _VAR.

class EX_ENV2

creation

make

feature

make is
local

env: STDC_ENV_VAR
do

create env.make ("HOME")
print (env.value)

52 Capabilities

print ("%N")
end

end

The POSIX doesn’t add any functionality here:

class EX_ENV1

creation

make

feature

make is
local

env: POSIX_ENV_VAR
do

create env.make ("HOME")
print (env.value)
print ("%N")

end

end

It is not possible in POSIX to set an environment variable. This is possible with the Single Unix
Specification classes. Using SUS _ENV _VARset_value it is possible to set environment variables.

10.3 Capabilities

Use the portable EPX _SYSTEM class to query for various system dependent constants like
max _open _files. There are operating system dependent queries in POSIX _SYSTEM and
WINDOWS _SYSTEM.

In this chapter:

• Sockets
• Echo client
• Echo client and server

11
Working with

the network

11.1 Sockets
e-POSIX currently has initial socket support. It will work only on POSIX systems, support for
Windows through the EPX layer will be added in a future release.

11.2 Echo client
The following example demonstrates a simple echo client for TCP. An echo server must be running
on your machine:

class EX_ECHO_CLIENT_TCP

creation

make

feature

hello: STRING is "Hello World.%N"

make is
local
host: SUS_HOST
service: SUS_SERVICE
echo: SUS_TCP_CLIENT_SOCKET
sa: EPX_HOST_PORT

do
create host.make_from_name ("localhost")
create service.make_from_name ("echo", "tcp")

create sa.make (host, service)

create echo.open_by_address (sa)
echo.write_string (hello)
echo.read_string (256)
if not echo.last_string.is_equal (hello) then
print ("!! got: ")
print (echo.last_string)

54 Echo client and server

end
end

end

The following example demonstrates a simple echo client for UDP. An echo server must be running
on your machine:

class EX_ECHO_CLIENT_UDP

creation

make

feature

hello: STRING is "Hello World.%N"

make is
local
host: SUS_HOST
service: SUS_SERVICE
echo: SUS_UDP_CLIENT_SOCKET
sa: EPX_HOST_PORT

do
create host.make_from_name ("localhost")
create service.make_from_name ("echo", "udp")

create sa.make (host, service)

create echo.open_by_address (sa)
echo.write_string (hello)
echo.read_string (256)
if not echo.last_string.is_equal (hello) then
print ("!! got: ")
print (echo.last_string)

end
end

end

11.3 Echo client and server
The following class demonstrates an echo server and client in a single class. It uses unix sockets (a
fast interprocess communication) to achieve that.

class EX_ECHO_UNIX

inherit

Working with the network 55

SUS_FILE_SYSTEM

SUS_CONSTANTS

creation

make

feature

make is
-- Echo client and server, unix style.

local
client_socket: SUS_UNIX_CLIENT_SOCKET
server_socket: SUS_UNIX_SERVER_SOCKET
client_fd: SUS_UNIX_SOCKET
correct: BOOLEAN

do
if is_existing ("/tmp/eposix") then
unlink ("/tmp/eposix")

end
create server_socket.listen_by_path ("/tmp/eposix", SOCK_STREAM)
create client_socket.open_by_path ("/tmp/eposix", SOCK_STREAM)
client_fd := server_socket.accept
client_socket.write_string (hello)
client_fd.read_string (256)
correct := client_fd.last_string.is_equal (hello)
if not correct then
print ("Oops.%N")

end
client_fd.write_string (berend)
client_socket.read_string (256)
correct := client_socket.last_string.is_equal (berend)
if not correct then
print ("Oops.%N")

end

client_socket.close
client_fd.close
server_socket.close
unlink ("/tmp/eposix")

end

feature {NONE} -- Implementation

hello: STRING is "Hello World.%N"
berend: STRING is "hello berend%N"

56 Echo client and server

end

The following class is similar, but uses TCP.

class EX_ECHO_TCP

inherit

SUS_CONSTANTS

creation

make

feature

make is
-- Echo client and server, tcp style.

local
host: SUS_HOST
service: SUS_SERVICE
client_socket: SUS_TCP_CLIENT_SOCKET
server_socket: SUS_TCP_SERVER_SOCKET
sa: EPX_HOST_PORT
client_fd: ABSTRACT_TCP_SOCKET
correct: BOOLEAN

do
create host.make_from_name ("localhost")
create service.make_from_port (port, "tcp")
create sa.make (host, service)
create server_socket.listen_by_address (sa)
create client_socket.open_by_address (sa)
client_fd := server_socket.accept
client_socket.write_string (hello)
client_fd.read_string (256)
correct := client_fd.last_string.is_equal (hello)
if not correct then
print ("Oops.%N")

end
client_fd.write_string (berend)
client_socket.read_string (256)
correct := client_socket.last_string.is_equal (berend)
if not correct then
print ("Oops.%N")

end

client_socket.close
client_fd.close

Working with the network 57

server_socket.close
end

feature {NONE} -- Implementation

port: INTEGER is 9877
-- Thanks to W. Richard Stevens

hello: STRING is "Hello World.%N"
berend: STRING is "hello berend%N"

end

In this chapter:

• Introduction
• HTTP client
• HTTP server

12
Working with
the network:

advanced top-
ics

12.1 Introduction
In version 2.0 e-POSIX has introduced the first of a series of classes for writing common Internet
clients and servers.

12.2 HTTP client

The following example demonstrates retrieval of a file through HTTP using the EPX _HTTP _10
_CLIENT class:

class EX_HTTP1

creation

make

feature

url: STRING is "http://www.freebsd.org/index.html"

make is
local
uri: EPX_URI
client: EPX_HTTP_10_CLIENT

do
create uri.make (url)
create client.make (uri.authority) -- www.freebsd.org
client.get (uri.path) -- /index.html
client.read_response
print (client.body.as_string)

end

end

Working with the network: advanced topics 59

It also demonstrates the use of the EPX _URI class to parse an URI into its components.

12.3 HTTP server

e-POSIX offers a basic HTTP server in EPX _HTTP _SERVER.

In this chapter:

• Introduction
• Windows
• Creating a daemon
• Logging messages and errors
• ULM based logging

13
Writing dae-

mons

13.1 Introduction
e-POSIX has several classes that help with writing daemons or services. First of all there is the
POSIX _DAEMON ancestor class. But as daemons have no user interface, there are also classes for
error and information logging.

13.2 Windows
On Windows NT (and derivatives) the equivalent of unix daemons are called services. They are
a lot harder to write and require an Eiffel compiler with multi-threading. It is not yet possible to
write an NT service with e-POSIX.

The logging functionality described in this chapter does work on Windows NT though.

13.3 Creating a daemon
Creating a simple daemon is easy if you inherit from POSIX _DAEMON. Implement the execute
method, and you’re done. At run--time, call detach to fork off a child. You can call detach as
many times as you want to spawn daemons.

class EX_DAEMON

inherit

POSIX_DAEMON

ARGUMENTS

creation

make

feature -- the parent

make is
do
-- necessary under SmallEiffel
ignore_child_stop_signal

Writing daemons 61

if argument_count = 0 then
print ("Options:%N")
print ("-d start daemon%N")

else
if equal(argument(1), "-d") then
detach
print ("Daemon started.%N")
print ("Its pid: ")
print (last_child_pid)
print ("%N")

end
end

end

feature -- the daemon

execute is
do
-- daemon stays alive for 20 seconds
sleep (20)

end

end

13.4 Logging messages and errors
Although POSIX doesn’t have logging facilities, the Single Unix Specification does. This specifica-
tion requires the presence of the syslogd daemon for centralizes logging facilities. The following
example shows you to write messages to this daemon

class EX_SYSLOG

inherit

SUS_CONSTANTS

SUS_SYSLOG_ACCESSOR

creation

make

feature

make is
do

syslog.open ("test", LOG_ODELAY + LOG_PID, LOG_USER)

62 ULM based logging

syslog.debug_dump ("this is a debug message")
syslog.info ("this is an informational message")
syslog.warning ("this is a warning")
syslog.error ("this is an error message")

syslog.close
end

end

Always use the SUS _SYSLOG _ACCESSOR to access the syslog wrapper class SUS _SYSLOG.
SUS _SYSLOG is a singleton, it makes no sense to open a connection to the syslog daemon twice.

13.5 ULM based logging
e-POSIX has portable routines for logging in Windows NT and Unix. This is build using the ULM
(Universal Format for Logger Messages) specification. The specification itself can be found at
http://www.hsc.fr/gul/draft-abela-ulm-05.txt. It is a fixed format for logging
that makes it easier to extract data with other tools.

On Unix e-POSIX outputs messages to the syslog daemon, see section 13.4. On Windows e-POSIX

logs to the event log. This makes this kind of logging specific to Windows NT based systems. It
will not work on Windows 9x based systems.

Below a short example of using ULM. The first step is to create a handler that does the actual logging.
The class EPX _LOG _HANDLER is operating system specific. If you compile on Windows it gives
NT event log logging, on Unix it gives syslog logging. There is no logging mechanism for Windows
9x, but it should not be hard to write one. Just implement ULM _LOG _HANDLER and implement
the deferred routines.

The second step is connecting that handler to the class that does ULM logging, the ULM _LOGGING
class. Logging is now set up.

class EX_ULM

creation

make

feature -- Initialization

make is
local
logger: ULM_LOGGING
handler: EPX_LOG_HANDLER
field: ULM_FIELD
fields: ARRAY [ULM_FIELD]

do
-- Create handler and logger

http://www.hsc.fr/gul/draft-abela-ulm-05.txt
http://www.hsc.fr/gul/draft-abela-ulm-05.txt
http://www.hsc.fr/gul/draft-abela-ulm-05.txt
http://www.hsc.fr/gul/draft-abela-ulm-05.txt
http://www.hsc.fr/gul/draft-abela-ulm-05.txt
http://www.hsc.fr/gul/draft-abela-ulm-05.txt
http://www.hsc.fr/gul/draft-abela-ulm-05.txt
http://www.hsc.fr/gul/draft-abela-ulm-05.txt

Writing daemons 63

create handler.make (identification)
create logger.make (handler, system_name)

-- Log a simple message
logger.log_message (logger.Alert, subsystem_name, "Hello World.")

-- Log a message with a custom field
create fields.make (0, 0)
create field.make (logger.SRC_IP, "127.0.0.1")
fields.put (field, 0)
logger.log_event (logger.Usage, Void, fields)

end

feature -- Access

identification: STRING is "example"

system_name: STRING is "ex_ulm"

subsystem_name: STRING is "none"

end

Two messages are written. Below the slightly formatted output Unix:

Jul 21 21:12:34 dellius example: DATE=20030721091234 \
HOST=dellius.nederware.nl PROG="ex_ulm.none" LVL=Alert \
MSG="Hello World."

Jul 21 21:12:34 dellius example: DATE=20030721091234 \
HOST=dellius.nederware.nl PROG="ex_ulm" LVL=Usage \
SRC.IP=127.0.0.1

The first message is in the default format. This will always log the date, the host where the
message originated and the program. The program field, PROG, consists of a system and subsystem
name, separated by dots. This subsystem name is the second parameter to ULM _LOGGING. log
_message. It may be Void, in which case no subsystem is added to the system name. The level
field, LVL, contains the importance of the message. It is the first parameter to ULM _LOGGING.
log _message. The class ULM _LOG _LEVELS has the complete list of levels. And in most
cases the log ends with a simple message, MSG, that contains the message itself.

Feature ULM _LOGGING. log _event allows more control over the fields that are logged. That
is demonstrated in the second message. You can pass the fields that are logged. You can use
the fields listed in http://www.hsc.fr/gul/draft-abela-ulm-05.txt, or any other
field. There is no MSG field if you don’t specify one.

An interesting application of the ULM specification is the NetLogger library, seehttp://www-didc.
lbl.gov/NetLogger/. It is a protocol to measure response times for a distributed application.

On Windows NT you can use the supplied messages.dll file to avoid this message in the event
log:

http://www.hsc.fr/gul/draft-abela-ulm-05.txt
http://www.hsc.fr/gul/draft-abela-ulm-05.txt
http://www.hsc.fr/gul/draft-abela-ulm-05.txt
http://www.hsc.fr/gul/draft-abela-ulm-05.txt
http://www.hsc.fr/gul/draft-abela-ulm-05.txt
http://www.hsc.fr/gul/draft-abela-ulm-05.txt
http://www.hsc.fr/gul/draft-abela-ulm-05.txt
http://www.hsc.fr/gul/draft-abela-ulm-05.txt
http://www-didc.lbl.gov/NetLogger/
http://www-didc.lbl.gov/NetLogger/
http://www-didc.lbl.gov/NetLogger/
http://www-didc.lbl.gov/NetLogger/
http://www-didc.lbl.gov/NetLogger/
http://www-didc.lbl.gov/NetLogger/

64 ULM based logging

The description for Event ID (some_number4) in Source
(some_name) cannot be found. The local computer may not have
the necessary registry information or message DLL files to
display messages from a remote computer.

Register this DLL under theHKLM/SYSTEM/CurrentControlSet/Services/Eventlog
/Application key. Add a new key which should have the name you have supplied to the EPX
_LOG _HANDLER. make routine. This key should have two values:

1. EventMessageFile, type REG_SZ. Its value is the full path to this messages.dll file.
2. TypesSupported, type DWORD. Its value should be 7.

In this chapter:

14
Writing CGI

programs

Although writing a CGI program doesn’t really belong to POSIX, they still are written often, so I
decided to include a few classes to make this easier. And of course, they build upon the Standard
C classes.

STDC CURRENT PROCESS
+

XML GENERATOR
+

XHTML GENERATOR
+

EPX CGI
+

Figure 14.1 BON diagram of EPX_CGI.

You inherit from EPX _CGI and implement execute. As EPX _CGI itself inherits from EPX
_XHTML _WRITER you can call use the features of that class to generate XHTML.

class EX_CGI1

inherit

EPX_CGI

creation

66

make

feature

execute is
do

content_text_html

doctype
b_html

b_head
title ("e-POSIX CGI example.")
e_head

b_body

p ("Hello World.")
extend ("<p>you can use your own tags.</p>")
b_p
puts ("or use any tag by using:")
e_p

start_tag ("table")
set_attribute ("border", Void)
set_attribute ("cols", "3")
start_tag ("tr")
start_tag ("td")
add_data ("start_tag")
stop_tag
start_tag ("td")
add_data ("stop_tag")
stop_tag
stop_tag
stop_tag

e_body
e_html

end

end

Output is accumulated in a string and written to stdout after your EPX _CGI. execute method
has finished. The partially built string is accessible with EPX _XML _WRITER. unfinished
_xml. Generated output is XHTML, which usually displays fine with older browsers. If strict XHTML

is problematic, you can call doctype _transitional instead of doctype.

Writing CGI programs 67

It is important not to write to stdout as the output is only written after your EPX _CGI. execute
has finished. If you want to write something to standard output, use the EPX _CGI. add _data
feature or its shortcut alias puts. If you want to write real tags, use add _raw. This last feature
allows you to write anything, while puts escapes reserved characters like ’>’.

If you use provided features like b _a, b _p and such, an attempt is made to produce good looking
source. Also your input is somewhat validated against XHTML standards.

It is also easy to write a CGI program that displays a form and accepts submitted values. Even file
upload is supported. The following example uses the GET method to submit data:

class EX_CGI2

inherit

EPX_CGI

creation

make

feature

execute is
do
content_text_html

doctype
b_html

b_head
title ("e-POSIX CGI form example.")
e_head

b_body

b_form_get ("ex_cgi2.bin")

b_p
puts ("Name: ")
b_input ("text", "name")
set_attribute ("size", "32")
e_input
e_p

b_p
puts ("City: ")
input_text ("city", 40, "enter city here")
e_p

68

b_p
b_button_submit ("action", "GO!")
e_button_submit

nbsp

button_reset
e_p

e_form

hr

p ("In your last submit you entered:")
b_p
if not has_key ("name") then
puts ("!!!!!")

end
puts ("name: ")
puts (value ("name"))
puts (", ")
puts ("city: ")
puts (raw_value ("city"))
e_p

e_body
e_html

end

end

You can use EPX _CGI. b _input to start an input element as shown for the input of a name. Or
you can use input _text to start a simple text input as shown for the input of a city. Below the
line you see the value a user has submitted, if any. Use value to get values with certain meta--
characters removed. The output is still not save to be passed straight to a Unix Shell though! You
can use raw _value to get the contents as submitted by the user.

In the above example it doesn’t matter much if you use b _form _get or b _form _post. But
with the GET method, you cannot upload files. The following example demonstrates how files can
be uploaded:

class EX_CGI3

inherit

EPX_CGI

creation

Writing CGI programs 69

make

feature

execute is
do
content_text_html

assert_key_value_pairs_created
save_uploaded_files

doctype
b_html

b_head
title ("e-POSIX CGI file upload example.")
e_head

b_body

b_form ("post", "ex_cgi3.bin")
set_attribute ("enctype", mime_type_multipart_form_data)

b_p
puts ("Filename: ")
b_input ("file", "filename")
set_attribute ("size", "32")
set_attribute ("maxlength", "128")
e_input
e_p

b_p
b_button_submit ("action", "Upload file(s)")
e_button_submit

nbsp

button_reset
e_p

e_form

e_body
e_html

end

70

save_uploaded_files is
local
kv: EPX_KEY_VALUE
buffer: STDC_BUFFER
target_name: STRING
target: STDC_BINARY_FILE

do
create buffer.allocate (8192)
from
cgi_data.start

until
cgi_data.after

loop
kv := cgi_data.item_for_iteration
if kv.file /= Void then
from
target_name := "/tmp/" + kv.value
create target.create_write (target_name)
kv.file.read_buffer (buffer, 0, 8192)

until
kv.file.eof

loop
target.write_buffer (buffer, 0, kv.file.last_read)
kv.file.read_buffer (buffer, 0, 8192)

end
target.close
kv.file.close

end
cgi_data.forth

end
buffer.deallocate

end

end

It is important to set the encoding type. This example accepts a file and writes it to /tmp. Because
multiple files can be present, this example just loops over all key value pairs and checks if a file is
present. This example isn’t fool--proof with multiple users submitting the same file, but you should
get the idea.

Note that the first line is EPX _CGI. content _text _html: in case an exception occurs, the
web server is still able to output something back to the user.

After that we make sure that the key value pairs are created with assert _key _value _pairs
_created. They are automatically created if you callvalue, but in this case we want the key value
pairs themselves. In EX _CGI3. save _uploaded _files we use the EPX _KEYVALUE.
file feature to check if that key value pair is an uploaded file: if it is not Void, it points to a
temporary file. As this file will be deleted when it is closed or when your program exits, we have

Writing CGI programs 71

to copy it to a new file. The filename is just the value part of this key value pair. The filename is
guaranteed to be free of directory parts.

In the last example we just print all key/value pairs to the file list.txt in the temporary directory.
We redirect the user to another file.

class EX_CGI4

inherit

EPX_CGI

EPX_FACTORY

creation

make

feature

execute is
do
assert_key_value_pairs_created
save_values

extend ("Location: /mydir/myfile.html")
new_line
new_line

end

save_values is
local
fout: STDC_TEXT_FILE
kv: EPX_KEY_VALUE

do
create fout.create_write (fs.temporary_directory + "/list.txt")
from
cgi_data.start

until
cgi_data.after

loop
kv := cgi_data.item_for_iteration
fout.puts (kv.key)
fout.puts ("%T")
fout.puts (kv.value)
fout.puts ("%N")
cgi_data.forth

end

72

fout.close
end

end

In this chapter:

• Error handling with exceptions
• Manual error handling

15
Error handling

This chapter describes the error handling strategies that are possible with e-POSIX. Basically there
are two strategies: using the Eiffel exception mechanism or doing the error handling all yourself.

15.1 Error handling with exceptions
The opinion of the author of e-POSIX is that Eiffel’s exception mechanism is very well suited to deal
with things like files that cannot be opened or directories that do not exist. Others disagree, see
section 15.2. e-POSIX is designed such that when a POSIX routine returns an error code, an exception
is thrown. Here my arguments why I favor this style of error handling:

1. We all know that exceptions are to be used for breach of contract. This idea is formulated in
(Meyer, 1997)and is the best expressed opinion of exception handling I know.
So if you ask an e-POSIX method to open a file, it will do that for you. If it cannot open the file,
for whatever reason, it will raise an exception. The same argument hold if you ask it to go to a
directory, to start a program, or to open a connection to another machine.
This approach is also reflected in the names of e-POSIX’s features. The name is POSIX _TEXT
_FILE. open _read and not POSIX _TEXT _FILE. attempt _open _read.

2. It is usually not wise to trust clients with error handling. The larger a distance between a
software failure and the error report, the more difficult it is to make a correct diagnosis of what
went wrong (see (Hatton, 2001)). e-POSIX uses the fail early, fail hard approach.

3. Error handling is often forgotten or left to some global general error handling mechanism.
In an interesting article (see (Whittaker, 2001)) James Whittaker describes how he modified
certain system calls to return legitimate, but unexpected return codes. Memory allocation failed
for example, or opening a file returned with no more file handles. Applications failed within
seconds, but it was usually completely unclear why.

4. It’s a lot easier for programmer’s. You don’t have to write any error handling. If your program
completed, you know that there wasn’t a single system call that failed, that you didn’t continue
despite some error. This will make it possible to write programs that do their work correctly if
no errors occur, or else do nothing.

First an example. Let’s take a look at the code you have to write in case you want to handle failure
of opening a file:

class EX_ERROR1

inherit

POSIX_CURRENT_PROCESS

creation

74 Error handling with exceptions

make

feature

make is
local

fd: POSIX_FILE_DESCRIPTOR
do

fd := attempt_create_file
end

attempt_create_file: POSIX_FILE_DESCRIPTOR is
local

attempt: INTEGER
still_exists: BOOLEAN

do
create Result.create_with_mode ("myfile", O_CREAT+O_TRUNC+O_EXCL, 0)

rescue
still_exists := errno.value = EEXIST
attempt := attempt + 1
if still_exists and then attempt <= 3 then

sleep (1)
retry

end
end

end

In this example we try to create a file exclusively. The create will fail if the file already exists. In
case this happens, we retry 3 times. Before retrying we wait 1 second. Note that if the error is not
EEXIST, we fail directly, without retrying.

In my opinion above’s code is just the code you want to write usually: do not worry about errors, if
something goes wrong, your application will fail.

My preferred way of error handling is (or sometimes should be) also reflected in the preconditions.
For example the POSIX _FILE _SYSTEM. browse _directory has the precondition that
the given path should exist and should be a directory. Quite reasonable I think. The argument
against such preconditions is that it is somewhat strange: if a client has honoured the precondition
by checking that the directory exists, it should be able to assume that it safely can call the routine.
But between its own check and the actual call, the directory can be removed by another process.

This is the concurrent precondition paradox (see (Meyer, 1997)). In my opinion it would not be
wise to remove this precondition. It is true that honouring it, will not make sure the contract is not
broken. But it still serves a very usefull purpose: documentation.

For example the routine POSIX _FILE _SYSTEM. remove _file does not have the precondi-
tion that the file should exist. That isn’t an oversight. This routine does not fail if the file no longer
exists for good reason: it honours its postcondition after all. So when you call this routine, the file
may or may not exist. The routine doesn’t care.

Error handling 75

15.2 Manual error handling
In spite of the arguments listed in the previous section, automatic error handling is perhaps tedious
to use when you expect a lot of errors. And some programmers just do not like Eiffel’s exception
mechanism. Therefore e-POSIX implements a completely different style of error handling. In this
case, e-POSIX continues when an error occurs, but it safes the errorcode, and you can check the
errorcode of the first error when you wish. This first errorcode has to be reset by the programmer.
An example:

class EX_ERROR2

inherit

STDC_SECURITY_ACCESSOR

creation

make

feature

make is
local

fd: POSIX_FILE_DESCRIPTOR
do

security.error_handling.disable_exceptions
create fd.create_write ("myfile")
if fd.errno.first_value = 0 then

fd.write_string ("1%N")
fd.write_string ("2%N")
fd.close

else
fd.errno.clear_first

end
end

end
Exception handling is turned off by a call to STDC _SECURITY _ACCESSOR. security.
error_handling.disable_exceptions. It can be enabled again by callingsecurity.
error_handling.enable_exceptions. In between, you’re on your own, just like a C pro-
grammer. If myfile cannot be opened, nothing happens, and the POSIX _FILE _DESCRIPTOR.
write _string feature is called. Depending if you have enabled precondition checking or not,
write _string will fail. The precondition if write _string is that the file has to be open.
Therefore, at certain points, you’re still forced to deal with errors. Every object has an errno
variable. This variable points to the global STDC _ERRNO object (its a once routine). So there
basically is just one first _value error value. Whatever object caused the error, you can check
the errno. first _value of any e-POSIX object. The last error is still available in errno.
value.

76 Manual error handling

If there is no error, the program continues writing. If POSIX _FILE _DESCRIPTOR. write
_string failed, the next one is still executed. If there is an error, we reset it with STDC _ERRNO.
clear _first. This gives us the chance to catch another error value if an error occurs. If this
method is not called, first _value will keep its original value.

The following example is the same as EX _ERROR1. It shows how to open a file exclusively with
manual error handling.

class EX_ERROR3

inherit

POSIX_CURRENT_PROCESS

EXCEPTIONS

creation

make

feature

make is
local

fd: POSIX_FILE_DESCRIPTOR
do

security.error_handling.disable_exceptions
fd := attempt_create_file

end

attempt_create_file: POSIX_FILE_DESCRIPTOR is
require

manual_error: not security.error_handling.exceptions_enabled
local

attempt: INTEGER
still_exists: BOOLEAN

do
from

attempt := 1
still_exists := True

until
not still_exists or else attempt > 3

loop
create Result.create_with_mode ("myfile", O_CREAT+O_TRUNC+O_EXCL, 0)
still_exists := errno.first_value = EEXIST
if still_exists then

sleep (1)
attempt := attempt + 1

Error handling 77

end
end
if still_exists then

raise ("failed to create file")
end

end

end

As you can see, manual error handling does not necessarily translate into less code.

The summary of this section is that you chould check each distinctive step when using manual error
handling. You don’t have to check intermediate steps.

In this chapter:

• Denial of service attacks
• Authorization bypass attacks

16
Security

e-POSIX is well--suited to write server applications like CGI scripts and daemons. As these appli-
cations can be hosted on servers that are attached to the Internet, they could be prone to attack.
Applications written with e-POSIX could be misused in a denial of service attack or to gain root
access. e-POSIX offers certain protection mechanisms that enable your applications to fend off such
penetrations.

This chapter shows you how applications can be misused and what mechanisms e-POSIX offers for
certain attacks.

“Programmers typically focus on "positive" aspects of programs, that is, what is the func-
tionality required for the task to be accomplished. Programmers rarely focus on the negative
aspects of programs, that is, what functionality is not required for the program to accomplish
its task. Attackers take advantage of proggrammers failure to consider negative functional-
ity. Perhaps a reason that programmers avoid negative functionality is that there is no good
way to specify what a program should not be permitted to do.”

16.1 Denial of service attacks
In a denial of service attack, crackers attempt to deplete one or more finite resources. Resources can
be software related like database connections or TCP/IP connections, but ultimately resources are
finite because of hardware limitations. This manual distinguishes the following hardware resources:

• Memory.
• CPU.
• Disk space.
• Network bandwidth.

A denial of service attack succeeds if a cracker depletes these resources in such a way that the
server cannot handle request anymore, or handles them very slowly. For example, Linux 2.2 is easy
to bring to its knees if you keep on allocating memory. In normal situations your application runs
fine, and allocates only a limited amount of memory. But an attacker might have found a way to
make your application allocate much more memory. Even if you are sure that the code you have
written is not prone to such an attack, you might use a library based on e-POSIX that does have code
that is exploitable.

e-POSIX has some limited support to set limits on memory, file handle (a memory issue) and cpu
usage. When a set limit has been exceeded, an exception is raised.

To limit the amount of memory that can be allocated by the STDC _BUFFER class, inherit from
STDC _SECURITY _ACCESSOR and call security. memory. set _max _allocation.
Currently this limits the amount of memory that can be allocated with STDC _BUFFER. It does
not limit the amount of memory that is allocated by STRING or other classes. You can also limit

Security 79

the amount of memory that can be allocated with a single call by calling security. memory.
set _max _single _allocation.

You can limit the number of file handles a program can open by calling security. files.
set _max _open _files. This works only with files and sockets opened by e-POSIX classes as
STDC _FILE and POSIX _FILE _DESCRIPTOR, not with files opened through other means. In
this case you cannot rely on the garbage collection to close your file. Certain garbage collectors
do not allow calling other classes in the MEMORY. dispose method. e-POSIX needs to do this to
decrement its idea of the number of open handles. Only when you explicitly call STDC _FILE.
close will the e-POSIX decrease its open file handles.

You can limit the amount of CPU time by calling security. cpu. set _max _process
_time. It is not possible to automatically halt your application when this time has exceeded. You
have to call security. cpu. check _process _time to actually check the processor time
used.

Currently e-POSIX cannot check disk space or network bandwidth limitations.

Discuss here that decrementing only works for manual deallocations,
I’m very sorry about that, but this is a problem of ISE. I’m think-
ing about ways to work around this.

16.2 Authorization bypass attacks
A hacker can bypass authorization if he or she, through your program, can gain the following access:

• Access to more information than your program is written to provide. Security is not breached
here, but your program is used in an ‘innovative’ way. Note that if your program runs within
the root security context (suid root), security can be breached!

• Security is breached when your program is used to get more access rights than your program is
written to provide. Especially suid root programs are an attractive target here.

Usually Eiffel programs do not allocate buffers on the stack, so they are not prone to the so called
‘buffer overflow’ attack. As certain vendors might provide some ‘native’ class that allocate things
on the stack, leave precondition checking always on in suid root programs.

Currently e-POSIX doesn’t offer much protection for suid root programs. Much better security will
be the topic of a next release.

In this chapter:

• Making C Headers available to Eiffel
• Distinction between Standard C and POSIX headers
• C translation details

17
Accessing C

headers

This chapter explains the conventions that e-POSIX uses to access the C--headers.

17.1 Making C Headers available to Eiffel
The most portable and safest header translation comes when a C function is not called verbatim,
but instead a translation function is used. For example to make the Standard C function fopen
available within Eiffel a new header file is created which lists an Eiffel compatible way to call this
routine:

#include "eiffel.h"
#include <stdio.h>

EIF_POINTER posix_fopen(EIF_POINTER filename, EIF_POINTER mode);

Instead of using C types, we use Eiffel types here, which are made available by including eiffel.
h.

The corresponding C file contains the following implementation:

#include "my_new_header.h"

EIF_POINTER posix_fopen(EIF_POINTER filename, EIF_POINTER mode)
{

return ((EIF_POINTER) fopen (filename, mode));
}

It simply calls the original function, returning the result. Type conversion between Eiffel and C
types shouldn’t pose problems this way.

To be able to call this function from Eiffel, an external feature needs to be written. For example:

class HEADER_STDIO

feature {NONE} -- C binding for stream functions

posix_fopen (path, a_mode: POINTER): POINTER is
-- Opens a stream

require
valid_mode: a_mode /= default_pointer

external "C"
end

Accessing C headers 81

end

Of course, the Eiffel function can have all Design By Contract features Eiffel programmers are
accustomed too.

To recapitulate: every header that is to be translated, needs:

1. a new header file, and
2. a corresponding C file, and
3. an Eiffel class.

For example to translate <stdio.h> a header file like eiffel_stdio.h and a C file eiffel
_stdio.c is needed. The Eiffel class could be in header_stdio.e.

17.2 Distinction between Standard C and POSIX headers
However, POSIX sometimes defines extensions to existing Standard C headers. Simply using a
translation header file like eiffel_stdio.h will not work for pure Standard C Eiffel programs,
as it can include POSIX specific extensions that might simply not be available on a given platform.

Therefore, e-POSIX divides the C headers in several groups:

1. The Standard C headers.
2. The POSIX headers.
3. The Single Unix Specification headers.
4. Microsoft Windows headers (as far as they define POSIX functions, this library does not translate

Microsoft Windows specific functions).

Every group gets its own translation header with its own prefix. A translated header has a prefix,
an underscore and next the original header name. The Standard C translation of <stdio.h> is
done in c_stdio.h and c_stdio.c. The POSIX extensions to this header are available in p
_stdio.h and p_stdio.c.

The corresponding Eiffel class follows similar conventions. It has the group’s prefix, next the string
‘API’, an underscore and next the name of the header. So all <stdio.h> functions are made
available in CAPI _STDIO.

In table 17.1 all the groups with there translation header prefix and Eiffel class prefix are listed.
See also the directory structure in figure 17.1.

17.3 C translation details
This translation wants to do as less as possible at the C level. It attempts to just make available the
C constants and C functions and do the actual work in Eiffel.

A few details:

1. Constants, C macro definitions, are exported in the header file with the prefix ‘const_’ and next
the macro name. The Eiffel API class exports these constants with the original, uppercased
name.

2. Struct members are exported with getter and setter functions. The get function has the prefix
‘posix’, an underscore, the struct name, an underscore and as last the member name. The

82 C translation details

set function has the prefix ‘posix’, an underscore, ‘set’, an underscore, the struct name, an
underscore and as last the member name.

Figure 17.1 e-POSIX

directory structure

Group directory header prefix class prefix

Standard C src/capi c CAPI

POSIX src/[api p PAPI

Single Unix Specification src/sapi s SAPI

Windows src/wapi w WAPI

Table 17.1 e-POSIX prefix conventions

In this chapter:

A
Posix function
to Eiffel class

mapping list

The following table defines exactly where a given Posix function is used in a Eiffel class mapping.
The table is sorted in alphabetic order. Note that when a STDC_ class is listed, the feature is also
available in the corresponding POSIX_ class.

Function Header Class Comment

abort <stdlib.h> STDC _CURRENT _PROCESS. abort
access <unistd.h> ABSTRACT _FILE _SYSTEM. is _accessible
aio_cancel <aio.h> POSIX _ASYNC _IO _REQUEST. cancel
aio_error <aio.h> POSIX _ASYNC _IO _REQUEST. is _pending
aio_fsync <aio.h> POSIX _ASYNC _IO _REQUEST. synchronize
aio_read <aio.h> POSIX _ASYNC _IO _REQUEST. read
aio_return <aio.h> POSIX _ASYNC _IO _REQUEST. return _status
aio_suspend <aio.h> POSIX _ASYNC _IO _REQUEST. wait _for
aio_write <aio.h> POSIX _ASYNC _IO _REQUEST. write
alarm <unistd.h> POSIX _TIMED _COMMAND
asctime <time.h> STDC _TIME. default _format
atexit <stdlib.h> probably not applicable.
calloc <stdlib.h> STDC _BUFFER. allocate _and _clear
cfgetispeed <termios.h> POSIX _TERMIOS. input _speed
cfgetospeed <termios.h> POSIX _TERMIOS. output _speed
cfsetispeed <termios.h> POSIX _TERMIOS. set _input _speed
cfsetospeed <termios.h> POSIX _TERMIOS. set _output _speed
chdir <unistd.h> POSIX _FILE _SYSTEM. change _directory
chmod <sys/stat.h> POSIX _FILE _SYSTEM. change _mode
chown <unistd.h> POSIX _PERMISSIONS _PATH. apply _owner _and _group
clearerr <stdio.h> STDC _FILE. clear _error
clock <time.h> STDC _CURRENT _PROCESS. clock
clock_getres <time.h>

clock_gettime <time.h>

clock_settime <time.h>

close <unistd.h> POSIX _FILE _DESCRIPTOR. close
closedir <dirent.h> POSIX _DIRECTORY
creat <fcntl.h> POSIX _FILE _DESCRIPTOR. create _read _write
ctermid <unistd.h>

ctime <time.h> Can be emulated withSTDC
_TIME.

cuserid <stdio.h> see getlogin
difftime <time.h> STDC _TIME
dup <unistd.h> POSIX _FILE _DESCRIPTOR. make _as _duplicate
dup2 <unistd.h> POSIX _FILE _DESCRIPTOR. make _as _duplicate
execl <unistd.h> See execvp.
execle <unistd.h> See execvp.
execlp <unistd.h> See execvp.
execv <unistd.h> See execvp.

84

execve <unistd.h> See execvp.
execvp <unistd.h> POSIX _EXEC _PROCESS. execute
exit <stdlib.h> STDC _CURRENT _PROCESS. exit
_exit <unistd.h>

fclose <stdio.h> STDC _FILE. close
fcntl <unistd.h> POSIX _FILE _DESCRIPTOR attempt_lock,get_lock,

set _lock and others.
fdatasync <unistd.h> POSIX _FILE _DESCRIPTOR. synchronize _data This function is not avail-

able on many so called
POSIX systems. In such cas-
es it is mapped to fsync.

fdopen <stdio.h> POSIX _FILE. make _from _file _descriptor
feof <stdio.h> STDC _FILE. eof
ferror <stdio.h> STDC _FILE. error
fflush <stdio.h> STDC _FILE. flush
fgetc <stdio.h> STDC _FILE. get _character
fgetpos <stdio.h> STDC _FILE. get _position
fgets <stdio.h> STDC _FILE. get _string
fileno <stdio.h> POSIX _FILE _DESCRIPTOR. make _from _file
fopen <stdio.h> STDC _FILE various open creation fea-

tures.
fork <unistd.h> POSIX _CURRENT _PROCESS. fork
fpathconf <unistd.h>

fprintf <stdio.h> not applicable.
fputc <stdio.h> STDC _FILE. putc
fputs <stdio.h> STDC _FILE. put _string
fread <stdio.h> STDC _FILE. read Also read _string and

read _character.
free <stdlib.h> STDC _BUFFER. deallocate
freopen <stdio.h> STDC _FILE. reopen
fseek <stdio.h> STDC _FILE. seek Alsoseek_from_current

and seek _from _end.
fsetpos <stdio.h> STDC _FILE. set _position
fstat <sys/stat.h> POSIX _STATUS Returned byPOSIX_FILE

_DESCRIPTOR.status.
fsync <unistd.h> POSIX _FILE _DESCRIPTOR. synchronize
ftell <stdio.h> STDC _FILE. tell
fwrite <stdio.h> STDC _FILE. write
getc <stdioh> See fgetc.
getchar <stdio.h> See fgetc.
getcwd <unistd.h> POSIX _FILE _SYSTEM. current _directory
getegid <unistd.h> POSIX _CURRENT _PROCESS. effective _group _id
getenv <stdlib.h> STDC _ENV _VAR. value
geteuid <unistd.h> POSIX _CURRENT _PROCESS. effective _user _id
getgid <unistd.h> POSIX _CURRENT _PROCESS. real _group _id
getgrgid <grp.h> POSIX _GROUP. make _from _gid
getgrnam <grp.h> POSIX _GROUP. make _from _name
getgroups <unistd.h> POSIX _CURRENT _PROCESS. is _in _group
getlogin <unistd.h> POSIX _CURRENT _PROCESS. login _name
getpgrp <unistd.h> POSIX _CURRENT _PROCESS. process _group _id
getpid <unistd.h> POSIX _CURRENT _PROCESS. pid
getppid <unistd.h> POSIX _CURRENT _PROCESS. parent _pid
getpwnam <pwd.h> POSIX _USER. make _from _name
getpwuid <pwd.h> POSIX _USER. make _from _uid
gets <stdio.h> See fgets.
gettimeofday <sys/time.h> SUS _TIME _VALUE
getuid <unistd.h> POSIX _CURRENT _PROCESS. real _user _id
gmtime <time.h> STDC _TIME. to _utc
isatty <unistd.h> POSIX _FILE _DESCRIPTOR. is _attached _to _terminal

Posix function to Eiffel class mapping list 85

kill <signal.h> POSIX _PROCESS. kill
link <unistd.h> POSIX _FILE _SYSTEM. link
lio_listio <aio.h>

localeconv <locale.h> STDC _LOCALE _NUMERIC
localtime <time.h> STDC _TIME. to _local
lseek <unistd.h> POSIX _FILE _DESCRIPTOR. seek Alsoseek_from_current

and seek _from _end.
malloc <stdlib.h> STDC _BUFFER. allocate
memcpy <string.h> STDC _BUFFER. memory _copy See also copy _from.
memchr <string.h>

memcmp <string.h>

memmove <string.h> STDC _BUFFER. memory _move
memset <string.h> STDC _BUFFER. fill _with
mkdir <sys/stat.h> POSIX _FILE _SYSTEM. make _directory
mkfifo <sys/stat.h> POSIX _FILE _SYSTEM. create _fifo
mktime <time.h> STDC _TIME. set _date _time Also set _date and set

_time.
mlockall <sys/mman.h>

mlock <sys/mman.h>

mmap <sys/mman.h> POSIX _MEMORY _MAP
mprotect <sys/mman.h>

mq-receive <mqueue.h>

mq_close <mqueue.h>

mq_getattr <mqueue.h>

mq_notify <mqueue.h>

mq_open <mqueue.h>

mq_send <mqueue.h>

mq_setattr <mqueue.h>

mq_unlink <mqueue.h>

msync <sys/mman.h>

munlockall <sys/mman.h>

munlock <sys/mman.h>

munmap <sys/mman.h> POSIX _MEMORY _MAP
nanosleep <time.h>

open <fcntl.h> POSIX _FILE _DESCRIPTOR. open Also open _read, open
_read_write andopen
_write

opendir <dirent.h> POSIX _DIRECTORY
pathconf <unistd.h> POSIX _DIRECTORY. max _filename _length
pause <unistd.h> POSIX _CURRENT _PROCESS. pause
perror <stdio.h> e-POSIX generates excep-

tions on error.
pipe <unistd.h> POSIX _PIPE. make
printf <stdio.h> not applicable.
putc <stdio.h> See fputc.
putchar <stdio.h> See fputc.
puts <stdio.h> See fputs.
raise <signal.h> STDC _SIGNAL. raise
rand <stdlib.h> STDC _CURRENT _PROCESS. random
read <unistd.h> POSIX _FILE _DESCRIPTOR. read
readdir <dirent.h> POSIX _DIRECTORY
realloc <stdlib.h> STDC _BUFFER. resize
remove <stdio.h> POSIX _FILE _SYSTEM. remove _file
rename <unistd.h> POSIX _FILE _SYSTEM. rename _to
rewind <stdio.h> STDC _FILE. rewind
rewinddir <dirent.h> POSIX _DIRECTORY
rmdir <unistd.h> POSIX _FILE _SYSTEM. remove _directory
scanf <stdio.h> not applicable.
sem_close <semaphore.h>

86

sem_destroy <semaphore.h>

sem_getvalue <semaphore.h>

sem_init <semaphore.h> POSIX _UNNAMED _SEMAPHORE. create _shared Andcreate_unshared.
sem_open <semaphore.h>

sem_post <semaphore.h> POSIX _SEMAPHORE. release
sem_trywait <semaphore.h> POSIX _SEMAPHORE. attempt _acquire
sem_unlink <semaphore.h>

sem_wait <semaphore.h> POSIX _SEMAPHORE. acquire
setbuf <stdio.h> STDC _FILE. set _buffer
setgid <unistd.h> POSIX _CURRENT _PROCESS. set _group _id Also restore _group

_id.
setlocale <locale.h> STDC _CURRENT _PROCESS. set _locale Alsoset_native_locale

andset_native_time.
setpgid <unistd.h> PAPI _UNISTD. posix _setsid
setsid <unistd.h> PAPI _UNISTD. posix _setsid
setuid <unistd.h> POSIX _CURRENT _PROCESS. set _user _id Alsorestore_user_id.
setvbuf <stdio.h> STDC _FILE. set _no _buffering Alsoset_full_buffering

andset_line_buffering
shm_open <sys/mman.h> POSIX _SHARED _MEMORY. open _read _write Andcreate_write,open

_read, Efeatureopen_write.
shm_unlink <sys/mman.h> POSIX _FILE _SYSTEM. unlink _shared _memory _object
sigaction <signal.h> POSIX _SIGNAL
sigaddset <signal.h> POSIX _SIGNAL _SET. add
sigdelset <signal.h> POSIX _SIGNAL _SET. prune
sigemptyset <signal.h> POSIX _SIGNAL _SET. make _empty
sigfillset <signal.h> POSIX _SIGNAL _SET. make _full
sigismember <signal.h> POSIX _SIGNAL _SET. has
signal <signal.h> STDC _SIGNAL. raise
sigpending <signal.h> POSIX _SIGNAL _SET. make _pending
sigprocmask <signal.h> POSIX _SIGNAL _SET. add _to _blocked _signals Alsoremove_from_blocked

_signals andset_blocked
_signals

sigqueue <signal.h>

sigsuspend <signal.h> POSIX _SIGNAL _SET. suspend
sigtimedwait <signal.h>

sigwait <signal.h>

sigwaitinfo <signal.h>

sleep <unistd.h> POSIX _CURRENT _PROCESS. sleep
sprintf <stdio.h> Not applicable.
srand <stdlib.h> STDC _CURRENT _PROCESS. set _random _seed
sscanf <stdio.h> Not applicable.
stat <sys/stat.h> POSIX _STATUS
strftime <time.h> STDC _TIME. format
sysconf <unistd.h> POSIX _SYSTEM
system <stdlib.h> STDC _SHELL _COMMAND
tcdrain <unistd.h>

tcflow <unistd.h>

tcflush <unistd.h> POSIX _TERMIOS. flush _input
tcgetattr <unistd.h> POSIX _TERMIOS. make
tcgetpgrp <unistd.h>

tcsendbreak <unistd.h>

tcsetattr <unistd.h> POSIX _TERMIOS. apply _now Also apply _drain and
apply _flush

tcsetpgrp <unistd.h>

time <time.h> STDC _TIME. make _from _unix _time
timer_create <signal.h>

timer_create <time.h>

times <times.h>

tmpfile <stdio.h> STDC _TEMPORARY _FILE. make

Posix function to Eiffel class mapping list 87

tmpnam <stdio.h> STDC _FILE _SYSTEM. temporary _file _name
ttyname <unistd.h> POSIX _FILE _DESCRIPTOR. ttyname
tzset <time.h>

umask <sys/stat.h>

uname <sys/utsname.h> POSIX _SYSTEM Various queries.
ungetc <stdio.h> STDC _FILE. ungetc
unlink <unistd.h> POSIX _FILE _SYSTEM. unlink
utime <utime.h> POSIX _FILE _SYSTEM. utime See also itstouchmethod.
vfprintf <stdio.h> Not applicable.
vprintf <stdio.h> Not applicable.
vsprint <stdio.h> Not applicable.
wait <sys/wait.h> POSIX _CURRENT _PROCESS. wait
waitpid <sys/wait.h> POSIX _FORK _ROOT. wait _pid
write <unistd.h> POSIX _FILE _DESCRIPTOR. write

This tabel does not contain the following category of functions:

1. Math functions.
2. String functions, including wide character/multibyte string. routines. The memory move/copy

functions are included, some of them even supported.
3. No type conversion functions.
4. No functions from <ctype.h>.
5. No functions from <setjmp.h>.
6. No functions from <stdarg.h>.
7. No string formatting functions like sscanf. I suggest you use the Formatter library for that.

You can download this library at http://www.pobox.com/˜berend/eiffel/.

Functions in above categories are either not applicable, already present in Eiffel or are better off in
a different library.

http://www.pobox.com/~berend/eiffel/
http://www.pobox.com/~berend/eiffel/
http://www.pobox.com/~berend/eiffel/
http://www.pobox.com/~berend/eiffel/
http://www.pobox.com/~berend/eiffel/
http://www.pobox.com/~berend/eiffel/
http://www.pobox.com/~berend/eiffel/

To do

ABSTRACT_DIRECTORY

1. ABSTRACT _DIRECTORY. forth _recursive raises an exception when it encounters a
symbolic link that does no longer point to a file. Because it tries to retrieve the statistics, and
that call fails.

EPX_FILE_SYSTEM

1. Make EPX _DIRECTORY.

STDC_FILE

1. read_integer, read_double, read_boolean should perhaps be different for the binary or text files.
Now they’re satisfy the mico/e definition, so useful for text files only.

STDC_LOCALE_NUMERIC

1. Complete the list of properties

STDC_PATH

1. make some escape char functionality with ‘%’ or so.

STDC_TIME

1. Add elapsed seconds

POSIX_DAEMON

1. Closing the first three file descriptors is not likened by SmartEiffel. So leaves them open. Have
to fix this some how.

POSIX_EXEC_PROCESS

1. Turn off Eiffel exception handling after the final execvp, else you get back signals not captured
by child process as your signals, or so it seems (or perhaps you’re killing the Eiffel process, but
not the subprocess it generated??)

To do 89

Killing subprocesses works sometimes, but not always.
Remove exception handling just before execvp?

2. how about capture to /dev/null?
3. can we capture i/o for every forked process? If so, move this code to POSIX_FORK_ROOT.
4. Perhaps option to influence environment variables to pass to subprocess?

POSIX_FILE_DESCRIPTOR

1. possible to open exclusively and so?
2. complete support for nonblocking i/o.

POSIX_MEMORY_MAP

1. Cannot change protection.
2. No locking.

POSIX_SEMAPHORE

1. not valid for named semaphore I think.
2. have to add various close/unlink functions.

POSIX_SIGNAL

1. Add synchronous waiting for signals like sigwait.
2. (Re)enable sending Eiffel exception on signal? i.e. set_exception_handler or so.
3. Resend signal as Eiffel exception in signal handler.

POSIX_STATUS

1. return STDC_TIME instead of unix time
2. Not all stat member fields are currently available.

POSIX_MQUEUE

1. Not in the free unices at this moment. Maybe have to get a copy of Solaris x86??

Security
Add base security class that specifies programs intent. Default is to allow anything, but security
can be tightened:

90 Windows code

1. Call to open or creat (used?), use real user id, not effective user id.
2. Assume we’re free from buffer attacks if preconditions are enabled.
3. exec/system call only allowed when effective user is not root, unless otherwise specified. Or

exec only allowed for specific files.
4. Protect against writing specific files/directories. Perhaps substitute vulnerable filenames for

other ones.
5. Emulate atomic calls. Or add atomic access and open call. Shouldn’t be done by setting

su??
6. When appending/writing to files, check if symbolic link.
7. ABSTRACT _FILE _SYSTEM. force _remove _directory is potentially unsafe be-

cause it follows links so it can be used to destroy things not under that directory.
8. remove tmpnam function.
9. Make sure the once functions in STDC_BASE are called from within the security initialization,

so they’re allocated and do not generate an out-of-memory exception themselves.

Idea from ‘Remediation of Application Specific Security Vulnerabilities at Runtime’ article in IEEE
Computer sep/oct 2000.

Windows code

1. chmod also available on Windows.
2. Add permissions to status: read/write.
3. set_binary_mode should do something for the posix factory, i.e., when compiling with cygwin.

Perhaps separate CYGWIN _API or so in POSIX dir with the window specific stuff.
Currently cygwin uses text mode for file descriptors, the windows variant uses binary.

4. utime can be supported by using SetFileTime.

Other

1. remove ugly const_ prefix from constants. Uppercase should be good enough.
Almost done, only const_EOF remains, not easy to replace perhaps.

2. Compare POSIX_SIGNAL with ISE UNIX_SIGNAL: They have an is_caught function, useful?
Means this signal generates an exception.

Known bugs

• The error code is perhaps not always set for every STDC _BASE. raise _posix _error.
• does STRING_HELPER leak memory in to_external? How is memory used for these conver-

sions being freed? Is memory used there?
• If a child process is signalled (terminated), the functionPOSIX_FORK_ROOT.is_terminated

_normally sometimes returns True.

Bibliography

1 (1996). System Application Program Interface (API) [C Language], volume Part I of In-
formation technology – Portable Operating System Interface (POSIX). ANSI/IEEE, 1996
edition.

2 (1991). The Standard C library. Prentice Hall.
3 (1994). POSIX programmer’s guide. O’Reilly & Associates.
4 Stevens, W. R. (1998). Unix network programming. Prentice Hall.
5 Meyer, B. (1997). Object-Oriented Software Construction. Addison Wesley, 2nd edition.
6 Hatton, L. (2001). Exploring the role of diagnosis in software failure. IEEE Software.
7 Whittaker, J. A. (2001). Software’s invisible users. IEEE Software.

Index

/src/library.xace 6
[23
_exit 84

a
abort 83
abort

STDC_CURRENT_PROCESS 83
ABSTRACT_FILE_DESCRIPTOR 6, 15,

21, 31, 34
access 83, 90
acquire

POSIX_SEMAPHORE 86
add

POSIX_SIGNAL_SET 86
add_data

EPX_CGI 67
add_raw

EPX_CGI 67
add_to_blocked_signals

POSIX_SIGNAL_SET 86
aio.h 83, 85
aio_cancel 83
aio_error 83
aio_fsync 83
aio_read 83
aio_return 83
aio_suspend 83
aio_write 83
alarm 83
allocate

STDC_BUFFER 85
allocate_and_clear

STDC_BUFFER 17, 83
ANY 4
apply

POSIX_SIGNAL 45
apply_drain

POSIX_TERMIOS 86
apply_flush

POSIX_TERMIOS 86

apply_now
POSIX_TERMIOS 86

apply_owner_and_group
POSIX_PERMISSIONS_PATH 83

asctime 83
assert_key_value_pairs_created

EPX_CGI 70
atexit 83
attempt_acquire

POSIX_SEMAPHORE 86
attempt_lock

POSIX_FILE_DESCRIPTOR 84
attempt_open_read

POSIX_TEXT_FILE 73

b
b_a

EPX_CGI 67
b_form_get

EPX_CGI 68
b_form_post

EPX_CGI 68
b_input

EPX_CGI 68
b_p

EPX_CGI 67
backslash 25
BeOS 6
big endian 18
binary file 25
binary mode 31
binary stdin 31
binary stdout 31
browse_directory

POSIX_FILE_SYSTEM 39, 74

c
c_stdio.c 81
c_stdio.h 81
calloc 83
cancel

POSIX_ASYNC_IO_REQUEST 83

Index 93

CAPI_STDIO 8, 81
C compiler

Borland 2, 4
lcc 2
Microsoft 2
Microsoft Visual C

+ 4
cecil.se 4
cfgetispeed 83
cfgetospeed 83
cfsetispeed 83
cfsetospeed 83
cgi 65

enumerating all values 71
file upload 67
redirect 71

change_directory
POSIX_FILE_SYSTEM 83

change_mode
POSIX_FILE_SYSTEM 83

chdir 83
chmod 83
chown 83
clear_error

STDC_FILE 83
clear_first

STDC_ERRNO 76
clearerr 83
clock 83
clock

STDC_CURRENT_PROCESS 83
clock_getres 83
clock_gettime 83
clock_settime 83
close 83
close

POSIX_FILE_DESCRIPTOR 83
STDC_FILE 79, 84

closedir 83
compiler.se 14
configure 1, 5
content_text_html

EPX_CGI 70
copy_from

STDC_BUFFER 85
creat 83, 90

create_fifo
POSIX_FILE_SYSTEM 14, 85

create_read_write
POSIX_FILE_DESCRIPTOR 83

create_shared
POSIX_UNNAMED_SEMAPHORE 86

create_unshared
POSIX_UNNAMED_SEMAPHORE 86

create_write
POSIX_SHARED_MEMORY 86

ctermid 83
ctime 83
Ctrl

C 43, 45
ctype.h 87
current_directory

POSIX_FILE_SYSTEM 84
cuserid 83
Cygwin 6
cygwin 8
CYGWIN 31
CYGWIN_API 90

d
deallocate

STDC_BUFFER 84
default_format

POSIX_TIME 50
STDC_TIME 83

detach
POSIX_DAEMON 60

difftime 83
directory

browse 39
change 36
create 36
remove 36
test_suite 16

dirent.h 83, 85
dispose

MEMORY 79
doctype

EPX_XML_WRITER 66
doctype_transitional

EPX_XML_WRITER 66
dup 83
dup2 83

94

e
EEXIST 74
effective_group_id

POSIX_CURRENT_PROCESS 84
effective_user_id

POSIX_CURRENT_PROCESS 84
eiffel.h 80
Eiffel Forum Freeware License iv
elj-win32 2
ENOSYS 14
environment variable 25

CYGWIN 31
EPOSIX 1

Environment variable
expansion 25

environment variable
GOBO_CC 1, 2, 2
GOBO_EIFFEL 2
set 52

eof
POSIX_TEXT_FILE 24
STDC_FILE 84

EPX_CGI v, 65
EPX_CURRENT_PROCESS 15, 31, 44
EPX_DIRECTORY 88
EPX_EXEC_PROCESS 15
EPX_FILE_DESCRIPTOR 14, 15
EPX_FILE_SYSTEM 14, 15
EPX_HTTP_10_CLIENT 58
EPX_HTTP_SERVER 59
EPX_LOG_HANDLER 62
EPX_PIPE 15
EPX_SOCKET 6
EPX_SYSTEM 52
EPX_TCP_CLIENT_SOCKET 6
EPX_URI 59
EPX_XHTML_WRITER 65
epxc 9
epxs 9
errno 8
errno

POSIX_FILE_DESCRIPTOR 75
errno.first_value

POSIX_FILE_DESCRIPTOR 75
errno.value

POSIX_FILE_DESCRIPTOR 75

error
STDC_FILE 84

error handling 73
EX_ERROR1 76
execl 83
execle 83
execlp 83
execute

EPX_CGI 65, 66, 67
POSIX_DAEMON 60
POSIX_EXEC_PROCESS 84
POSIX_FORK_ROOT 47
POSIX_SHELL_COMMAND 42

execv 83
execve 84
execvp 83, 84
exit 84
exit

STDC_CURRENT_PROCESS 84
expand_path

POSIX_FILE_SYSTEM 25

f
fclose 84
fcntl 84
fcntl.h 83, 85
fd_stdin

EPX_CURRENT_PROCESS 31
fd_stdout

EPX_CURRENT_PROCESS 31
fdatasync 5, 6, 6, 84
fdopen 84
feof 84
ferror 84
fflush 84
fgetc 84
fgetpos 84
fgets 84
file

EPX_KEYVALUE 70
file

read entire 23
fileno 84
file pointer 26
fill_with

STDC_BUFFER 85

Index 95

first_value
POSIX_FILE_DESCRIPTOR 75
STDC_ERRNO 76

flush 32
flush

STDC_FILE 84
flush_input

POSIX_TERMIOS 86
fopen 80, 84
force_remove_directory

ABSTRACT_FILE_SYSTEM 90
fork 84
fork

POSIX_CURRENT_PROCESS 47, 84
format

POSIX_TIME 50
STDC_TIME 86

forth_recursive
ABSTRACT_DIRECTORY 88

forum.txt iv
fpathconf 84
fprintf 84
fputc 84, 85
fputs 84, 85
fread 84
free 84
freopen 84
fseek 84
fsetpos 84
fstat 84
fsync 5, 6, 6, 84
ftell 84
fwrite 84

g
geant 1
get_character

STDC_FILE 84
get_lock

POSIX_FILE_DESCRIPTOR 14, 29, 84
get_position

POSIX_FILE 26
STDC_FILE 84

get_string
STDC_FILE 84

getc 84
getchar 84

getcwd 84
getegid 84
getenv 84
geteuid 84
getgid 84
getgrgid 84
getgrnam 84
getgroups 84
getlogin 83, 84
getpgrp 84
getpid 12, 84
getppid 84
getpwnam 84
getpwuid 84
gets 84
gettimeofday 84
getuid 84
gexace 3
gmtime 84
Gobo 21, 34
grp.h 84

h
has

POSIX_SIGNAL_SET 86
HTTP 9

i
input_speed

POSIX_TERMIOS 83
input_text

EPX_CGI 68
is_accessible

ABSTRACT_FILE_SYSTEM 83
is_attached_to_terminal

POSIX_FILE_DESCRIPTOR 84
is_blocking_io

ABSTRACT_FILE_DESCRIPTOR 34
is_in_group

POSIX_CURRENT_PROCESS 84
is_modifiable

POSIX_FILE_SYSTEM 37
is_pending

POSIX_ASYNC_IO_REQUEST 83
is_readable

POSIX_FILE_SYSTEM 39

96

is_terminated_normally
POSIX_FORK_ROOT 90

isatty 84
ISE Eiffel 2

k
KI_CHARACTER_INPUT_STREAM 21,

34
KI_CHARACTER_OUTPUT_STREAM 21
kill 85
kill

POSIX_PROCESS 85

l
last_string

POSIX_TEXT_FILE 24
libeposix_ise_msc.lib 2
libeposix_se.a 2, 14
libeposix_ve_msc.lib 5
library.xace 3
license iv
link 85
link

POSIX_FILE_SYSTEM 85
lio_listio 85
little endian 18
local_date_string

POSIX_TIME 50
local_time_string

POSIX_TIME 50
locale.h 85, 86
localeconv 85
localtime 85
lock 28
log_event

ULM_LOGGING 63
log_message

ULM_LOGGING 63
login_name

POSIX_CURRENT_PROCESS 84
lseek 85

m
make

EPX_LOG_HANDLER 64
POSIX_PIPE 85
POSIX_TERMIOS 86

STDC_TEMPORARY_FILE 86
make.exe 2
make_as_duplicate

POSIX_FILE_DESCRIPTOR 32, 83
make_directory

POSIX_FILE_SYSTEM 85
make_empty

POSIX_SIGNAL_SET 86
make_from_file

POSIX_FILE_DESCRIPTOR 84
make_from_file_descriptor

POSIX_FILE 84
make_from_gid

POSIX_GROUP 84
make_from_name

POSIX_GROUP 84
POSIX_USER 84

make_from_now
POSIX_TIME 50

make_from_uid
POSIX_USER 84

make_from_unix_time
STDC_TIME 86

make_full
POSIX_SIGNAL_SET 86

make_pending
POSIX_SIGNAL_SET 86

malloc 85
max_filename_length

POSIX_DIRECTORY 85
max_open_files 52
memchr 85
memcmp 85
memcpy 85
memmove 85
memory_copy

STDC_BUFFER 85
memory_move

STDC_BUFFER 85
memset 85
MIME 9
minicom 32
mkdir 85
mkfifo 6, 6, 14, 85
mktime 85
mlock 85
mlockall 85

Index 97

mmap 85
modem 32
mprotect 85
mq-receive 85
mq_close 85
mq_getattr 85
mq_notify 85
mq_open 85
mq_send 85
mq_setattr 85
mq_unlink 85
mqueue.h 85
msync 85
munlock 85
munlockall 85
munmap 85

n
nanosleep 85
non-blocking i/o 21, 34

o
open 85, 90
open

POSIX_FILE 8
POSIX_FILE_DESCRIPTOR 85

open_read
POSIX_FILE 8
POSIX_FILE_DESCRIPTOR 85
POSIX_SHARED_MEMORY 86
POSIX_TEXT_FILE 73

open_read_write
POSIX_FILE_DESCRIPTOR 85
POSIX_SHARED_MEMORY 86

open_write
POSIX_FILE_DESCRIPTOR 85

opendir 85
Open Source iv
output_speed

POSIX_TERMIOS 83

p
p_stdio.c 81
p_stdio.h 81
PAPI_UNISTD 8
parent_pid

POSIX_CURRENT_PROCESS 84

pathconf 85
path name 25
pause 85
pause

POSIX_CURRENT_PROCESS 85
peek_int16

STDC_BUFFER 17
peek_int16_big_endian

STDC_BUFFER 18
peek_int16_little_endian

STDC_BUFFER 18
peek_int32

STDC_BUFFER 17
peek_uint16

STDC_BUFFER 17
permissions

POSIX_FILE_SYSTEM 39
perror 85
pid

POSIX_CURRENT_PROCESS 12, 84
pipe 85
poke_int32_big_endian

STDC_BUFFER 18
poll iv
POSIX_ASYNC_IO_REQUEST 35
POSIX_BASE 8
POSIX_BINARY_FILE 21
POSIX_BUFFER 17, 17, 18
POSIX_CONSTANTS 9
POSIX_CURRENT_PROCESS 47
POSIX_DAEMON 60, 60
POSIX_DIRECTORY 39, 40, 83, 85
POSIX_EXEC_PROCESS v, 42
POSIX_FILE 21, 21
POSIX_FILE_DESCRIPTOR 15, 27, 79, 84
POSIX_FILE_SYSTEM 36, 37
POSIX_FORK_ROOT 12, 47
POSIX_MEMORY_MAP 19, 85
POSIX_PERMISSIONS 39
posix_setsid

PAPI_UNISTD 86
POSIX_SHARED_MEMORY 17
POSIX_SHELL_COMMAND 42
POSIX_SIGNAL 86
POSIX_SIGNAL_HANDLER 45, 46
POSIX_STAT 39
POSIX_STATUS 39, 84, 86

98

POSIX_SYSTEM 52, 86, 87
POSIX_TEXT_FILE 21, 28
POSIX_TIMED_COMMAND 83
printf 85
process_group_id

POSIX_CURRENT_PROCESS 84
prune

POSIX_SIGNAL_SET 86
put_string

STDC_FILE 84
putc 85
putc

STDC_FILE 84
putchar 85
puts 85
puts

EPX_CGI 67
pwd.h 84

q
QNX 6

r
raise 85
raise

STDC_SIGNAL 85, 86
raise_posix_error

STDC_BASE 90
rand 85
random

STDC_CURRENT_PROCESS 85
raw_value

EPX_CGI 68
read 6, 85
read

ABSTRACT_FILE_DESCRIPTOR 6, 34
POSIX_ASYNC_IO_REQUEST 35, 83
POSIX_FILE 24
POSIX_FILE_DESCRIPTOR 85
STDC_FILE 84

read_buffer
POSIX_FILE 24

read_character
STDC_FILE 84

read_line
[23
ABSTRACT_FILE_DESCRIPTOR 31

read_string
[23
ABSTRACT_FILE_DESCRIPTOR 21
POSIX_TEXT_FILE 24
STDC_FILE 84

readdir 85
real_group_id

POSIX_CURRENT_PROCESS 84
real_user_id

POSIX_CURRENT_PROCESS 84
realloc 85
recv 6
redirect standard error 32
reestablish

STDC_SIGNAL_HANDLER 46
refresh

POSIX_PERMISSIONS 39
release

POSIX_SEMAPHORE 86
remove 85
remove_directory

POSIX_FILE_SYSTEM 85
remove_file

GENERAL 4
POSIX_FILE_SYSTEM 4, 74, 85

remove_from_blocked_signals
POSIX_SIGNAL_SET 86

rename 85
rename_to

POSIX_FILE_SYSTEM 85
reopen

STDC_FILE 84
resize

STDC_BUFFER 85
restore_group_id

POSIX_CURRENT_PROCESS 86
restore_user_id

POSIX_CURRENT_PROCESS 86
return_status

POSIX_ASYNC_IO_REQUEST 83
rewind 85
rewind

STDC_FILE 85
rewinddir 85
rmdir 85

Index 99

s
save_uploaded_files

EX_CGI3 70
scanf 85
security.cpu.check_process_time

STDC_FILE 79
security.cpu.set_max_process_time

STDC_FILE 79
security.error_handling.disable_exceptions

STDC_SECURITY_ACCESSOR 75
security.error_handling.enable_exceptions

STDC_SECURITY_ACCESSOR 75
security.files.set_max_open_files

STRING 79
security.memory.set_max_allocation

STDC_SECURITY_ACCESSOR 78
security.memory.set_max_single_allocation

STRING 79
seek 26
seek

POSIX_FILE 26
POSIX_FILE_DESCRIPTOR 85
STDC_FILE 84

seek_from_current
POSIX_FILE_DESCRIPTOR 85
STDC_FILE 84

seek_from_end
POSIX_FILE_DESCRIPTOR 85
STDC_FILE 84

select iv
sem_close 85
sem_destroy 86
sem_getvalue 86
sem_init 86
sem_open 86
sem_post 86
sem_trywait 86
sem_unlink 86
sem_wait 86
semaphore.h 85, 86
sendmsg 6
set_allow_anyone_read

POSIX_PERMISSIONS 39
set_allow_group_write

POSIX_PERMISSIONS 39
set_blocked_signals

POSIX_SIGNAL_SET 86

set_blocking_io
ABSTRACT_FILE_DESCRIPTOR 34

set_buffer
POSIX_ASYNC_IO_REQUEST 35
STDC_FILE 86

set_count
POSIX_ASYNC_IO_REQUEST 35

set_date
STDC_TIME 85

set_date_time
STDC_TIME 85

set_full_buffering
STDC_FILE 86

set_group_id
POSIX_CURRENT_PROCESS 86

set_handler
POSIX_SIGNAL 45, 46

set_input_speed
POSIX_TERMIOS 83

set_line_buffering
STDC_FILE 86

set_locale
STDC_CURRENT_PROCESS 86

set_lock
POSIX_FILE_DESCRIPTOR 84

set_native_locale
STDC_CURRENT_PROCESS 86

set_native_time
STDC_CURRENT_PROCESS 86

set_no_buffering
STDC_FILE 86

set_offset
POSIX_ASYNC_IO_REQUEST 35

set_output_speed
POSIX_TERMIOS 83

set_position
POSIX_FILE 26
STDC_FILE 84

set_random_seed
STDC_CURRENT_PROCESS 86

set_time
STDC_TIME 85

set_user_id
POSIX_CURRENT_PROCESS 86

setbuf 86
setgid 86
setjmp.h 87

100

setlocale 86
setpgid 86
setsid 86
setuid 86
setvbuf 86
shm_open 86
shm_unlink 86
sigaction 86
sigaddset 86
SIGCHLD 46
sigdelset 86
sigemptyset 86
sigfillset 86
sigismember 86
signal 86
signal.h 85, 86
signal handler 45
signalled

POSIX_SIGNAL_HANDLER 45, 46
sigpending 86
sigprocmask 86
sigqueue 86
sigsuspend 86
sigtimedwait 86
sigwait 86, 89
sigwaitinfo 86
slash 25
sleep 86
sleep

EPX_CURRENT_PROCESS 44
POSIX_CURRENT_PROCESS 86

SmallEiffel v
SmartEiffel 2
sprintf 86
srand 86
src/library.xace 1, 5
sscanf 86, 87
stat 39, 86
status

POSIX_FILE_DESCRIPTOR 39, 84
STC_TEMPORARY_FILE 13
stdarg.h 87
STDC_BASE 8
STDC_BINARY_FILE 13, 31
STDC_BUFFER 13, 17, 17, 78
STDC_CONSTANTS 9, 13
STDC_CURRENT_PROCESS 13

STDC_ENV_VAR 13, 51
STDC_ERRNO

POSIX_FILE_DESCRIPTOR 75
STDC_FILE 21, 79, 84
STDC_FILE_SYSTEM 13
STDC_LOCALE_NUMERIC 85
STDC_SECURITY_ACCESSOR 78
STDC_SHELL_COMMAND 13, 86
stdc_signal_switch_switcher 4
STDC_SYSTEM 13
STDC_TEXT_FILE 13, 31
STDC_TIME 13, 83
stderr 32
stdin

binary 31
stdin

EPX_CURRENT_PROCESS 31
stdio.h 81, 81, 83, 84, 85, 86, 87
stdioh 84
stdlib.h 83, 84, 85, 86
stdout 32

binary 31
stdout

EPX_CURRENT_PROCESS 31
stream buffer 32
strftime 86
STRING 78
string.h 85
support

commercial iv
supports_nonblocking_io

ABSTRACT_FILE_DESCRIPTOR 34
SUS_BASE 8
SUS_ENV_VAR

STDC_ENV_VAR 52
SUS_SYSLOG 62
SUS_SYSLOG_ACCESSOR 62
SUS_TIME_VALUE 84
suspend

POSIX_SIGNAL_SET 86
synchronize

POSIX_ASYNC_IO_REQUEST 35, 83
POSIX_FILE_DESCRIPTOR 84

synchronize_data
POSIX_FILE_DESCRIPTOR 84

sys/mman.h 85, 86
sys/stat.h 83, 84, 85, 86, 87

Index 101

sys/time.h 84
sys/utsname.h 87
sys/wait.h 87
sysconf 86
system 86
system.se 14
system.xace 3, 5

t
tcdrain 86
tcflow 86
tcflush 86
tcgetattr 86
tcgetpgrp 86
tcsendbreak 86
tcsetattr 86
tcsetpgrp 86
tell

POSIX_FILE 26
STDC_FILE 84

temporary_file_name
STDC_FILE_SYSTEM 87

terminal 29
password 29

termios.h 83
text mode 31
time 86
time.h 83, 84, 85, 86, 87
timer_create 86
times 86
times.h 86
tmpfile 86
tmpnam 87
to_local

POSIX_TIME 50
STDC_TIME 85

to_utc
POSIX_TIME 50
STDC_TIME 84

touch
POSIX_FILE_SYSTEM 87

ttyname 87
ttyname

POSIX_FILE_DESCRIPTOR 87
tzset 87

u
ULM_LOG_HANDLER 62
ULM_LOG_LEVELS 63
ULM_LOGGING 62
umask 87
uname 87
unfinished_xml

EPX_XML_WRITER 66
ungetc 87
ungetc

STDC_FILE 87
unistd.h 83, 84, 85, 86, 87
unlink 8, 87
unlink

POSIX_FILE_SYSTEM 87
unlink_shared_memory_object

POSIX_FILE_SYSTEM 86
URI 9, 59
utime 87
utime

POSIX_FILE_SYSTEM 87
utime.h 87

v
value

EPX_CGI 68, 70
STDC_ENV_VAR 84

VE_BIN 5
vfprintf 87
Visual Eiffel v
VisualEiffel 2, 5
vprintf 87
vsprint 87

w
wait 87
wait

POSIX_CURRENT_PROCESS 12, 87
wait_for

POSIX_ASYNC_IO_REQUEST 35, 83
POSIX_CHILD 12
POSIX_EXEC_PROCESS 43

wait_pid
POSIX_FORK_ROOT 87

waited_child_pid
POSIX_CURRENT_PROCESS 12

waitpid 87

102

Windows 2000 6
WINDOWS_PAGING_FILE_SHARED_MEMORY

19
WINDOWS_SYSTEM 52
write 6, 87
write

ABSTRACT_FILE_DESCRIPTOR 6, 34
POSIX_ASYNC_IO_REQUEST 35, 83

POSIX_FILE_DESCRIPTOR 87
STDC_FILE 84

write_string
POSIX_FILE_DESCRIPTOR 75, 76

x
XM_UNICODE_CHARACTER_CLASSES

4

Index 103

