xplain2sql 3.0

I
manua Xplain

2007-March-13 Technology Ltd

by Berend de Boer

Contents

Introduction
Acknowledgements

License and Support
License
Mailinglist
Paid support

1 Compilation and installation

1.1 Requirements

1.1.1 Supported platforms

1.1.2 Supported compilers

1.1.3 Libraries

1.2 Compiling xplain2sql C source
1.3 Compiling xplain2sql Eiffel source
1.4 Testing the installation

1.5 Installation

2 Using xplain2sql

2.1 Converting xplain files

2.2 Known limitations

2.2.1 No full support for the Xplain language yet
2.2.2 General conversion to SQL issues
2.2.3 DB/2 6 limitations

2.24 DB/2 7.1 limitations

2.2.5 FireBird 2.1 limitations

2.2.6 InterBase 6/FireBird 1.x limitations
2.2.7 Microsoft SQL Server limitations
2.2.8 MySQL 3 and 4 limitations

2.29 MySQL 5 limitations

2.2.10 Oracle limitations

2.2.11 PostgreSQL 8 limitations

2.2.12 PostgreSQL 7 limitations

2.2.13 SQLite limitations

3 Extensions to Xplain

3.1 More representations

3.2 Null/not null support

3.3 Quoted names

3.4 Unique support

3.5 Rename column heading support

3.6 Index support

3.7 Including and using other script files

W

N IO OO DD (W2 B G Gy

e T o T e T e T e T e T e S e S SR S G St
N IO O UL U I W W= 00 0o o 0o

N NN DN DN ==
=il el el en B eniNe JiNa iNo)

3.8
3.9
3.10

4

4.1
4.2
4.3
4.4
4.5
4.6
4.7

)
5.1
5.2

6

6.1
6.2
6.3
6.4

Literal SQL
Stored procedures support
Enhanced auto-primary key support

Using xplain2sql in a legacy environment
Names with underscores
Primary keys
Sequences
Use and include
Creating views to map xplain2sql output more closely
Calling functions
Injection of arbitrary SQL code in expressions

XML output
xplain2sql.xml file
Processing the XML file with XSLT

Implementation
Tokenizing
Parsing
SQL generator
Other details

7 What is Xplain

7.1
7.2
7.2.1
7.2.2
7.3
7.4
74.1
7.4.2
7.4.3

The Xplain book
Short introduction to Xplain
Introduction
Abstractions
Employee and department
Case study: Bank
Case description
Assignment
Conceptual design

Index

References

22
22
24

25
25
25
26
26
26
26
27

28
28
30

32
32
33
34
36

37
37
38
38
39
42
44
44
44
45

48

49

Introduction

This document is a manual for compiling and using xplain2sql. xplain2sql is an
Xplain to SQL converter. Xplain is a data definition and data manipulation lan-
guage, just like SQL. However, Xplain has many advantages. It’s a very clean,
concise and orthogonal language. Unlike SQL, in Xplain there’s usually just one
solution to a problem, not dozens. Xplain is also easier to learn. And it supports
both aggregation and generalization. Both the is-a and has-a using an elegant
definition language. Inheritance in data models is still something one seldom en-
counters. With Xplain this is natural and easy. Xplain therefore is a perfect
complement to an all object-oriented language like Eiffel. By the way, in chapter 7
Xplain is treated in more detail and some examples are given.

There’s one problem however, you can draw Xplain diagrams and write Xplain
code, but there’s no' way to execute it. In the Xplain book (see [1]) some guidelines
to convert Xplain to SQL are given. But wouldn’t it be really useful to be able to
convert Xplain to SQL automatically?

And that was the start of a long list of tools. The first such a tool was written in
Turbo Pascal 7.0. Later versions were written in Delphi. As they mostly only did
the data definition part, they were named ddI2sql. These converters have been used
on serious business systems, for example to generate the Microsoft SQL Server 6.5
code on the new administrative system for Urk, Fish Auction, the largest flat-fish
auction in Europe.

When I wanted to write some serious programs on Unix, I started to look for a
language that compiled to native code, was cross-platform, object-oriented, and not
C++. I knew Eiffel a long time, having used design-by-contract for 5 years. But
I hadn’t used Eiffel. I was surprised by the activity and tools that were available
at that moment. Especially SmallEiffel (now called SmartEiffel) attracted me
as I could use familiar Emacs, a compiler that wasn’t buried behind layers of a
supposedly fancy IDE. It was time to learn Eiffel, the language. And there was
the Eiffel Struggle 1999. It was time to write the greatest Xplain converter of
all times, which converted the entire Xplain language to an SQL dialect of your
choice.

With xplain2sql two goals are achieved:

1. Write database code in an object-oriented data definition language.
2. Write it once, and port to any SQL dialect you want.

So here it is, xplain2sql. This document explains how to compile and install it,
how to use it. Also it gives a short introduction to the Xplain language itself (see

There is also an Xplain product. But compared to todays tools, this is quite primitive. It’s also
a one-tier system, so therefore not accessible from modern RAD tools like Delphi.

http://www.eiffel-nice.org/eiffelstruggle/1999/struggle1999.html
http://www.eiffel-nice.org/eiffelstruggle/1999/struggle1999.html
http://www.eiffel-nice.org/eiffelstruggle/1999/struggle1999.html

Acknowledgements 4

chapter 7). More information can be found on my Xplain page at http://www.
pobox.com/~berend/xplain/.

And of course, this document has been created with Emacs and compiled to PDF

with ConTEXt.

Acknowledgements

It has been a gratifying experience to know that so many people use this product
for so many different purposes. So thanks to all people who use this product and
have told me something about how they use it. Many users have also sent me
suggestions for improvement. Especially I want to thank:

e Martin van Dinther for the very sensible suggestion to translate A to varchars
instead of chars. Also thanks for your suggestions on improving the Oracle
output.
Mark Hissink for trying the Microsoft Access output.
Jacco Eerland for suggesting a fix so the middleware code would compile with
Delphi 7.

e John Wiggings for suggestions to improve PostgreSQL output.

http://www.pobox.com/~berend/xplain/
http://www.pobox.com/~berend/xplain/
http://www.pobox.com/~berend/xplain/
http://www.pobox.com/~berend/xplain/
http://www.pobox.com/~berend/xplain/
http://www.pobox.com/~berend/xplain/
http://www.pobox.com/~berend/xplain/

License 5

License and Support

License

xplain2sql is an Open Source program. It’s available under the Eiffel Forum Li-
cense, version 2. You can find more details in the forum.txt file, provided with
the xplain2sql distribution.

Mailinglist

You can subscribe to the Xplain mailing list. Subject of this mailing list is Xplain
the language and related tools like xplain2sql. Go to http://groups.yahoo.com
/group/Xplain to read current message and to subscribe.

Paid support

If your company is interested in Xplain or xplain2sql, you can ask me to provide
a one or two day course in Xplain and/or xplain2sql. Prices are 1200 NZD a day,
excluding VAT, travel and hotel expenses. Contact me at berend@pobox.com.
If your company is not satisfied about the course, the fee is refunded (excluding
the expenses).

http://groups.yahoo.com/group/Xplain
http://groups.yahoo.com/group/Xplain
http://groups.yahoo.com/group/Xplain
http://groups.yahoo.com/group/Xplain
http://groups.yahoo.com/group/Xplain
http://groups.yahoo.com/group/Xplain
http://groups.yahoo.com/group/Xplain
mailto:berend@pobox.com

Requirements 6

1 Compilation and installation

This chapter explains how to compile and install xplain2sql. If you want to avoid
compiling xplain2sql, packages and binaries for several platforms are available at
http://www.pobox.com/~berend/xplain2sql/.

1.1 Requirements

1.1.1 Supported platforms

xplain2sql compiles on both Unix (tested on Ubuntu 8.0.4 and FreeBSD 6.2) and
Windows (tested on Windows 2000 sp2). Any platform with a Standard C compiler
should be fine.

1.1.2 Supported compilers

I suggest you use the C code release of xplain2sql. It can be compiled with any
Standard C compiler.

If you want to compile the Eiffel sources, things are only slightly more difficult.
You can use either SmartEiffel 1.2r7, VisualEiffel or ISE Eiffel 5.6 or later. Earlier
SmartEiffel releases or the SmartEiffel 2.x fork are not supported.

1.1.3 Libraries

If you want to compile the Eiffel sources of xplain2sql, you need to have Gobo 3.5
or later installed on your system.

1.2 Compiling xplain2sql C source
Just unzip the archive:
unzip xplain2sql-3.0-csrc.zip
And run make:
make
If you use the free Borland C 5.5 compiler, make sure to use the special target:

make xplain2sql-bcc

http://www.pobox.com/~berend/xplain2sql/
http://www.pobox.com/~berend/xplain2sql/
http://www.pobox.com/~berend/xplain2sql/
http://www.pobox.com/~berend/xplain2sql/
http://www.pobox.com/~berend/xplain2sql/
http://www.pobox.com/~berend/xplain2sql/
http://www.pobox.com/~berend/xplain2sql/

Compiling xplain2sql Eiffel source 7

1.3 Compiling xplain2sql Eiffel source

If you have the Gobo tools in your path, building it on any platform using SmartFif-
fel can be done with:

geant compile_se
For VisualEiffel it is:
geant compile_ve

There is a Makefile, but this is for development only.

1.4 Testing the installation

If you have the full Eiffel sources, and you use a Unix platform, you can run a few
test targets:

make test
or
make bank
Errors are written to test.err in the first example or bank.err in the second.

There should only be warnings in test.err. bank.err should be empty.

On NT, you need to have some Unix utilities on your path like rm and cat. If you
have the NT resource Kit, the POSIX utilities will do fine. You probably can also
use the win32 port from Cygnus. And with a decent make, you should be able to
execute these commands too. I've been not very lucky with makes on NT. Many
of the NT makes seem to have problems with redirection inside a Makefile.

1.5 Installation

Installation is as simple as copying plain2sql or xplain2sql.exe to a directory
somewhere in your path. On Unix systems this can be /usr/local/bin, on NT
this can be /winnt/system32.

You can also copy the man file xplain2sql.1 somewhere in your man path.

Converting xplain files 8

2 Using xplain2sql

2.1 Converting xplain files
To convert an Xplain ddl to some dialect of SQL, type:
xplain2sql -tsql test.ddl
The above example translates the Xplain test.ddl to Transact-SQL, writing it to

standard output. xplain2sql exits with exit level 1 if a fatal error has occurred.

To generate output for MySQL, use:
xplain2sql -mysql test.ddl

To save output to test.sql, redirect the output as usual:
xplain2sql -tsql test.ddl > test.sql

In table 2.1 the SQL dialects xplain2sql supports are given. See also section 2.2
about known limitations.

In table 2.2 the other options xplain2sql supports are given. Options only have
affect if the selected SQL dialect supports them.

2.2 Known limitations

The conversion is not (yet) optimal for all supported dialects. Sometimes Xplain
is not fully supported, and sometimes limitations in the SQL dialect or a not yet
finished Builder gives problems. This chapter also mentions some limitations in
support for xplain2sql extensions described in the next chapter.

2.2.1 No full support for the Xplain language yet

The Xplain language is supported to a large degree, but still some things are
missing. Most important are:

1. Names are case-sensitive. This can be changed fairly easily, but a consistent
spelling helps reading Xplain source in the author’s opinion.

2. Data types are not checked for correctness. When a string is assigned to an
integer, xplain2sql relies on the SQL dialect to convert it. And that does not
always succeed.

3. The assert command should work for all dialects, provided they support at
least views, but no code is generated to check if the value of an assertion is in
the specified range. For example:

Known limitations

Dialect Remark

-ansi Output ansi-92 sql.

-basic Output basic sql statements.

-db26 Output DB/2 6 sql statements.

-db2

-db271 Output DB/2 7.1 sql statements (tested against DB/2 9.5.0).

-firebird

-firebird21 | Output FireBird 2.1 sql (tested against version 2.1.0.17798).

-interbase

-interbase6 | Output InterBase or FireBird 1.x sql (tested against version
1.0.3).

-mysql

-mysqlb Output MySQL 5.0 (tested against version 5.0.51a).

-mysql4 Output MySQL 4.0 or higher. Only data definition could be
made to work more or less.

-mysql322 Output MySQL 3.22. Only data definition could be made to
work more or less.

-oracle

-oracle901 Output Oracle sql (tested on Oracle 9.0.1).

-pgsql

-pgsql8l Output PostgreSQL 8.1 sql (tested against version 8.2.7).

-pgsql73 Output PostgreSQL 7.3 sql (tested against version 7.3.3).

-sqlite

-sqlite3 Output SQLite version 3 (tested against version 3.2.7).

-tsql65 Output Microsoft Transact-SQL 6.5. Purging of columns
doesn’t work. And Microsoft SQL Server 6.5 is less stable than
SQL Server 7.0, so a statement might generate a crash of the
server.

-tsql70 Output Microsoft Transact-SQL 7.0.

-tsql

-tsq12000 Output Microsoft SQL Server 2000 Transact-SQL (tested

against SQL Server Express 2005).

Table 2.1 SQL dialects supported by xplain2sql

Known limitations 10

Option

Explanation

-attributenull

Attributes (columns) are normally not null except BLOB
columns. With this option columns are null by default.

-noauto

Do not create auto-generated primary keys. Auto-generated pri-
mary keys are the default, so you don’t have to care about pri-
mary keys in your applications.

-nodatabase

Do not output code for the Xplain database command. This
makes it easier to create scripts that can be run in different
databases. Without this option the Xplain database command
will change to current database to the set database first.

-nosp

Don’t create a stored procedure to insert rows.

-timestamp

Add the fieldname ts_<type name> of type ‘timestamp’ to
every table. This is a Microsoft SQL Server specific option.
Note that the ‘timestamp’ type has nothing todo with date or
time. Timestamps are degenerate-degenerate field calls, but
it’s the only form of concurrency control we have with MS SQL
Server.

-view

Create a view on every table. Could be useful if you want to
have security only on views, and not on tables.

-xml

Generate an XML description of the generated SQL code. This
XML description is very useful to generate wrapper classes for
your favorite programming language.

Table 2.2 Options supported by xplain2sql

assert invoice its lines (1..*) = count invoice line per invoice.

will allow you to query the number of lines per invoice with:

get invoice its lines.

But there’s no check that an invoice has at least one line. Such checks should
be run at the end of a transaction, and very view databases allow such checks.
The level of support for the init (default) statements depends on the particular
dialect. Constant values are most widely supported. Literal values (including
expressions that evaluate to a constant such as 1 + 1) need trigger support in
certain dialects. All other forms require support for triggers.

Due to some parsing peculiarities there should be no comment between a type
and its init (default) statements.

case expressions are not supported at the moment.

The check constraint is not supported.

Make sure the init statement immediately follows the type statement, without
intervening other statements. This is due to the fact that xplain2sql does

Known limitations 11

7.

8.
9.
10.

11.
12.
13.
14.
15.

not build an AST, but generates output immediately while parsing. This will
be corrected in a future release.

Purging of attributes is supported but not all dialects support the alter table
drop column statement.

purge of attributes or inits is not yet supported.

case keyword in inheritance is not yet supported.

Because the date functions are not supported, any usage of a literal date is sql
dialect specific.

Not all Xplain 5.8 string and mathematical functions are supported.

The newline keyword is not supported.

The input keyword is not supported.

Constants can be updated, although this is not allowed in Xplain.

The cascade keyword is not supported.

2.2.2 General conversion to SQL issues

There are six problems converting Xplain to SQL:

1.

If a dialect doesn’t support double quoted identifiers, don’t try to use an sql
keyword as name for a type or base. Currently they’re not translated or es-
caped.

Xplain data definition support can be converted quite well to SQL. Only init
construct which refer to an attribute, need trigger or stored procedure support.
For a really good implementation you need to be able to write a "before insert’
trigger. Else a conversion is not possible or you need to do all your inserts
through a stored procedure.

InterBase should be able to support init quite well, but the implementation is
severely lacking in this respect.

The value statement needs some temporary storage, local to the current trans-
action.

InterBase and DB/2 don’t have this, so they essentially only support single-
user. The generated code need to be modified on the fly to support multiple
users by creating tables with unique names or so.

Microsoft SQL Server and PostgreSQL support temporary storage.

The extend statement also needs temporary storage, the problems and limita-
tions are the same as for the value statement.

Full support for the some function requires the ability to select a single row,
usually the first, from a statement returning multiple rows. Not all dialects
have this ability. If the some statement selects a single instance, i.e.:

get some t "1" its a.

the conversion is safe. Also if you know the result is just a single instance, the
conversion should also be good enough.

It is not clearly defined if Xplain is case-sensitive, but it seems it is. The code
that xplain2sql generates is case-sensitive on a database that is case-sensitive

Known limitations 12

and case-insensitive on a database that is case-insensitive. This is considered a
feature. For certain backends it is possible to generate case-sensitive code on a
database that is case-insensitive, but a need for this option has not yet arisen.
All relational database servers seem to be case-sensitive by default, except
Microsoft SQL Server. With Microsoft SQL Server 2000, case-sensitivity can
be set on a per database basis.

2.2.3 DB/2 6 limitations

xplain2sql has the following limitations when converting to DB/2 version 6 (but
see also 2.2.4):

1.

Auto-generated primary keys are not supported in the version 6 script. But
it seems DB/2 version 6 had them too, so you might just want to use the 7.1
script against version 6 databases.

Not-literal inits are not supported.

There is no support for temporary tables. The SQL generated for the value
statement is therefore not immediately useful in a multi-user environment.
For extends, one use either views (option -extendview) or subselects (option
extendinline) instead of extends with tables.

Insert, update and delete stored procedures cannot be generated as DB/2 only
has Java or C stored procedures.

No full support for the some statement.

2.2.4 DB/2 7.1 limitations

xplain2sql’s support for DB/2 is quite complete. These are the current limitations
when converting to DB/2:

1.

DB/2 7.1 cannot alter a temporary table, so the value statement cannot use
one. The SQL generated for the value statement is therefore not immediately
useful in a multi-user environment.

Inside procedures, values should work fine though.

Full support for the some statement is possible, but has not yet been imple-
mented.

You need at least Fixpack 2 if you want to be able to specify instance identi-
fication values in insert. And note that the code generated by xplain2sql only
works in the single-user case, i.e. when loading the data base with data.

DB/2 output uses the '@’ character as statement terminator. Use this command
to process xplain2sql generated scripts with db2:

db2 -td@ -vf myfile.sql

Also the db2upd function must be present in your sqllib/function directory.
That can be simply done with:

Known limitations 13

1n -s /usr/IBMdb2/V7.1/function/db2udp .

Replace V7.1 with your DB/2 version of course.

You also need temporary table space in your databases. I create this with:

CREATE USER TEMPORARY TABLESPACE USR_TEMPSPC1
MANAGED BY SYSTEM USING (’usr_tempspcl’)

Certain SQL output needs access to a table which returns just one row. xplain2sql
uses SYSIBM.SYSDUMMY1. This is a default table that is present on every
installation and is to be used for exactly this purpose. Users need to have select
permissions on this table.

2.2.5 FireBird 2.1 limitations

xplain2sql has the following limitations when converting to FireBird 2.1:

1. A large number (larger than 31 bits) which has a domain restriction will fail if
the specified domain restriction exceeds 31 bits. Example:

base salary (120) (5000..*).

2. Complex inits cannot be supported by FireBird. A complex init initializes an
attribute using the value of another attribute through an its list like:

init default entry its entry description = group its group description.

It is not possible to generate SQL code for this with FireBird. Currently these
inits are not masked out for FireBird output and generate an exception. So
don’t use them in data definition scripts meant to be processed by FireBird.

3. No full support for the some function as it is not possible to specify that a
select should return just a single row.

4. FireBird does not support the insert into ... default values clause. If
there is nothing to insert, xplain2sql will generate incorrect code. That can
happen if there is an init on all attributes of a type.

5. An extend inside a stored procedure does not work.

6. A procedure with no statements does not compile on FireBird.

2.2.6 InterBase 6/FireBird 1.x limitations

xplain2sql has the following limitations when converting to InterBase or FireBird
1.x:

Known limitations 14

1. It’s just too easy to create a query that bombs InterBase. This generator tries
to output the most safe code, but if the output looks complex, it probably will
not make InterBase happy.

2. A large number (larger than 31 bits) which has a domain restriction will fail if
the specified domain restriction exceeds 31 bits. Example:

base salary (120) (5000..%).

3. InterBase does not have support for temporary tables. The SQL generated
for the wvalue statement is therefore not immediately useful in a multi-user
environment. Inside a procedure value should work perfectly.

4. Complex inits cannot be supported by InterBase. A complex init initializes an
attribute using the value of another attribute through an its list like:

it default entry its entry description = group its group description.

It is not possible to generate SQL code for this with InterBase. Currently these
inits are not masked out for InterBase output and generate an exception. So
don’t use them in data definition scripts meant to be processed by InterBase.

5. No full support for the some function.

6. InterBase does not support the insert into ... default values clause. If
there is nothing to insert, xplain2sql will generate incorrect code. That can
happen if there is an init on all attributes of a type.

7. InterBase does not have support for temporary tables. The SQL generated
for the extend statement is therefore not immediately useful in a multi-user
environment because everyone will write to the same table.

8. An extend with a function might be a bit slower than in other SQL dialects,
because InterBase does not have a coalesce function. Therefore we need to do
a second pass to update those cases where the calculated value is null and does
not have the default value for that function.

9. An extend inside a stored procedure does not work.

10. A procedure with no statements does not compile on InterBase.

2.2.7 Microsoft SQL Server limitations

The Microsoft SQL Server implementation is very complete. On one hand this is
due to me using it a lot, on the other, because it is absolutely the most easiest
SQL dialect to work with. Many other dialects require special syntax inside stored
procedures, special hacks, or just don’t have the required functionality. Kudos to
Microsoft, for this one!

The only conversion artefact is that a non literal init default is translated to a
column which can be null. This is due to the fact that in Transact SQL triggers
only fire after the constraints have been satisfied (incorrectly I think). There will
be an on update trigger in a future release to check that a user does not set such
attributes to null.

Known limitations 15

2.2.8 MySQL 3 and 4 limitations

MySQL is a very strange ‘database’ among the other databases xplain2sql sup-
ports. It doesn’t obey the ACID properties, nor do its authors think this is useful.
Anyway, only the data definition part of Xplain can be converted to MySQL.
Other statements like the ertend statement, ask too much of what MySQL has
to offer. As MySQL doesn’t support subselects, Xplain functions can also not be
translated.

For MySQL 4 you must make sure ANSI mode has been enabled.
You might find the MySQL Gotchas page useful.

2.2.9 MySQL 5 limitations

MySQL 5 has begun to look like a real database. That means the support of
xplain2sql is far more complete than for earlier versions. There still remain a few
issues though.

1. The Xplain system default functions systemdate and loginname are not sup-
ported. Output is incorrect in this case.

2. Self referencing queries might not work due to problems with temporary tables,
see Temporary Table Problems.

3. Specifying a non literal init default will cause a column to allow null values.
This is due to the fact that in MySQL triggers only fire after the constraints
have been satisfied (incorrectly I think). There will be an on update trigger in
a future release to check that a user does not set such attributes to null.

xplain2sql has been tested with MySQL 5.0.15. Due to certain changes with earlier
5.0 versions this is probably also the minimum 5.0 release xplain2sql supports.

2.2.10 Oracle limitations

1. Domains are not translated to subtypes. Support for this would require to
output a package with all types at the beginning of the output. This requires
a change in how xplain2sql emits its output. It probably will be possible in
version 3.0.

2. extend command not really supported. Works slightly outside stored proce-

dures.

Output for Booleans should include restriction that it can be only T’ or F’.

There is no support for more complex inits (those referring to other attributes).

5. Updating a column using the value of an extend will fail if there are no rows
in the table.

6. Don’t mix inserts that provide an instance id with inserts that rely on a auto-
generated key. The current Oracle output does not update the generator when
an instance id is provided.

Ll

http://sql-info.de/mysql/gotchas.html
http://sql-info.de/mysql/gotchas.html
http://dev.mysql.com/doc/refman/5.0/en/temporary-table-problems.html
http://dev.mysql.com/doc/refman/5.0/en/temporary-table-problems.html
http://dev.mysql.com/doc/refman/5.0/en/temporary-table-problems.html

Known limitations 16

7. Procedures (an xplain2sql extension) are transformed to a function that re-
turns a reference cursor (weak cursor). I'm not sure if that is correct. The
goal is to produce output that can generate a result set that is recognized by

ADO/ODBC drivers.
8. A procedure with no statements will not compile under Oracle.

This is an example of how to call an Xplain generated function that returns a
result set:

variable c¢ refcursor
exec :c := "sp_test"
print c

2.2.11 PostgreSQL 8 limitations

PostgreSQL 8 support is very complete. Remaining issues:

1. Stored procedures cannot return multiple record sets. I.e. two gets in a stored
procedure will lead to invalid code.

2. Names with spaces still have major issues. For example PostgreSQL auto
generates a sequences for serial primary keys, The sequence name is derived
from the column name. But if the column name contains spaces, it is not
possible to retrieve the value of the generated key.

The use -nospace to suppress spaces is therefore recommended.

3. Should emit create type statements for domains.

Constants are parsed as float8 and do not map to numeric datatypes.

5. If you use an identifier that is actuall an SQL keyword, PostgreSQL will not
accept this SQL. PostgreSQL quoting doesn’t actually quote keywords.

L

Note that xplain2sql needs the ‘plpgsql’ language loaded in the database. This
can be achieved by the create language statement or by using the createlang
utility. An example of loading this language into database ‘mydatabase’ is:

createlang --pglib=/usr/lib/pgsql plpgsql mydatabase
Another option is to add this to your template database, so it will always be
present.
If a stored procedures returns a resultset (i.e. you have a get statement in it), that
result set can be accessed with:

select * from "sp_my procedure"();
This result set works fine with ODBC. The output is different from xplain2sql 2.0,
which used an older technique. The new technique is far more practical.

If you use the -pgsql71 switch, code for the 7.1 dialect will be emitted. For set
returning functions this is slightly different from the 7.3 code. Cursors can be
accessed with:

Known limitations 17

begin;

select "sp_my procedure"();

fetch all in "<unnamed cursor 1>";
commit;

For ODBC applications I could get a result set if I first executed this statement:

begin;
select "sp_my procedure"();

And next executing, using the same connection and statement handle, this:
fetch all in "<unnamed cursor 1>";

No commit statement until you have read all rows. Execute commit
commit;

before calling another set returning function. It’s a bit unfortunate that the next
unnamed cursor will be called "<unnamed cursor 2>". So that makes a complex
application extremely awkward. If someone knows how to generate named cursors,
please.

If you want to create a procedure in xplain2sql that is to be used as a , use trigger
procedure instead of just procedure. xplain2sql will emit the necessary code so the
procedure can be used as a trigger.

2.2.12 PostgreSQL 7 limitations

Since PostgreSQL 7.0 subselects are accepted. With that, it moves to the forefront
of supported SQL dialects. Remaining issues:

1. Stored procedures cannot return multiple record sets. l.e. two gets in a stored
procedure will lead to invalid code.

2. Names with spaces don’t really work in functions in Postgres 7.1. It seems
quoted names are not handled properly by the plpgsql parser. Version 7.3
works fine here.

See section 2.2.11 for a discussion on calling PostgreSQL SQL code from a client.

2.2.13 SQLite limitations

SQLite was one of the easiest versions to support. Support is quite complete, but
be aware that SQLite does not actually guarantee all specified constraints.

Unsupported are:

Known limitations 18

1. No support for the extended Xplain command procedure, because SQLite does
not support stored procedures.

2. purge of attributes is unsuported, because SQLite does not support this.

3. Specifying a non literal init default will cause a column to allow null values.
This is due to the fact that in SQLite triggers only fire after the constraints
have been satisfied (incorrectly I think). There will be an on update trigger in
a future release to check that a user does not set such attributes to null.

More representations 19

3 Extensions to Xplain

This chapter describes the various enhancements xplain2sql has compared to the
original Xplain specification.

3.1 More representations

Beside the standard Xplain representations, see table 3.1, xplain2sql also has sup-
port for additional representations, see table 3.2. Support for additional represen-
tations depends on the particular sql dialect.

Representation | Explanation

Ax Character field of length x. Translated to a VARCHAR.

B Boolean. Either translated to a Boolean if the dialect supports
it, or to a CHAR(1) with 'T” and 'F’ as allowed values.

Ix Integer field of length x.

Rx,y Float field with x positions before the decimal point and y after.

Table 3.1 Standard Xplain representations

Representation | Explanation

C Fixed length character field.

D Implemented as date and time field if dialect supports it, else
it’s the standard date field.

M Money field.

P Picture field.
Text/memo field (unlimited compared to character field).

Table 3.2 Additional representations supported by xplain2sql

3.2 Null/not null support

By default attributes (columns) are not null. This is basically an Xplain require-
ment as Xplain doesn’t know Nulls. There is one exception: memo and picture
columns are Null by default. This has to do with storage. Even the empty string
takes up a full page in case of a memo column.

To change the default Null behavior xplain2sql supports two additional keywords
: optional and required.

Quoted names 20

If you want a certain column to be null you specify the optional keyword in front
of it. So if business town is not required, you write:

type department (A3) = department name, optional business_town.

On the other hand, if you want a certain column to be required, use the required
keyword. So if a employee should have a picture:

type employee (A3) = name, home_ town, salary, required photo.

Be aware that there is no real support for optional attributes, base or type. If you
say:

get employee its department its department name.

employees without a department will be silently skipped.

3.3 Quoted names

It is sometimes useful to use an Xplain keyword in a name. This can be done by
quoting the name inside the ¢ and the ’ characters like:

unique index t2 its ‘first index’ = al.

In this example index is a reserved name. Because it is quoted, it is no longer
rejected.

Quoted names are allowed wherever a name is allowed.

3.4 Unique support

If you want a certain column to have a unique value for a table, specify the unique
keyword in front of it. So if a department name is unique, you write:

type department (A3) = unique department name, business_town.

3.5 Rename column heading support

When a get statement is translated to the SQL select statement, the column
names (column headings) do no longer indicate how there were derived. So in
SQL columns can have duplicate names, which is not possible in Xplain. In such
a case you can use the as keyword to rename a column. Example:

get department its department name as name.

Index support 21

3.6 Index support

It is possible to specify the indexes that should be created with the keyword indez.
You can either create a normal indez, a unique index, a clustered index or a unique
clustered index.

Example:

index department its firstindex =
department name.

unique index department its firstindex =
department name.

unique clustered indexr department its ‘some name’ =
business_town, department name.

3.7 Including and using other script files

For more complex environments one often wants to split Xplain statements across
several files. xplain2sql has two features to support this quite well:

1. xplain2sql can include another Xplain script. Example:

database test.
Anclude "myinclude.ddl"

type something (I4) = name.

A .include statement reads the contents of the included file as if it was typed
right there. The definition of name for example is assumed to be in myinclude.
ddl. The definition of name and the definition of something are converted to
SQL, and therefore both present in the output.

2. xplain2sql can use another Xplain script. Example:

database test.
.use "myinclude.ddl"

type something (I4) = name.

A .use statement reads the definitions of the used file, but does not generate
any output for this file. In the above example the definition of something is
converted to SQL, but the definition of name is not. So only the definition of
something is present in the output.

Literal SQL 22

Other remarks:

e Note that these dot commands start with a dot, but do not end with a dot as
all Xplain commands do!

e Both included and used files have one restriction: they should not have the
database statement.

e Files can be included and used in any combination, and without depth restric-
tion. xplain2sql currently does not detect or warn for circular references!

3.8 Literal SQL

It is possible to include literal (include) SQL in an Xplain file. That Xplain file
however, will not be portable to a different dialect anymore.

Literal SQL starts with the ”’ character and stops with the ’’ character. Example:

type department (A3) = department name, business_ town.

{

create unique index idx__department on
department("department name");

}

First a create table statement will be generated and the create index statement
will be directly behind it. Note that since release 0.8.1 you can specify indexes
directly with enhanced Xplain, so a more portable form would be:

type department (A3) = department name, business_ town.

unique index department its ‘idx_ department’ = department name.

See also section 3.6.

3.9 Stored procedures support

The procedure statement in xplain2sql makes it possible to create SQL dialect inde-
pendent stored procedures. A procedure is a collection of one or more Xplain data
retrieval statements. Data definition statements are not supported and usually
not allowed by SQL dialects either.

The following example wraps a get statement inside the stored procedure ‘retrieve
names’:

base short text (A60).
base long text (T).

Stored procedures support 23

type name (19) =
unique short text, long text.

procedure retrieve names =
get name.

end.

Procedures can take parameters as well. Parameters can be base or type names,
with an optional role. An example of a base parameter is:

procedure retrieve names by text with short text =

get name
where
short text = ?short text.

end.

A parameter can be used by using a question mark followed by its name. The
following example shows how a type parameter can be used to select a single
instance:

procedure retrieve name instance with name =
get name 7name.

end.

It is possible to use literal SQL (see section 3.8) inside a procedure. The following
example demonstrates this:

procedure ‘delete unreferenced content’ =
extend content with ‘reference count’ =
count node
per content.

update content "1" 7ts ‘reference count’ = 1.

delete content
where ‘reference count’ = 0.

this code is extremely faster on TSQL

{

Enhanced auto-primary key support 24

delete from [content]
from [content]
join [#content.reference count| on
[#content.reference count].[id__content] = [content].[id__content]
where
[#content.reference count].[reference count] = 0
}

end.

The reason why the literal SQL appears in the procedure shown above is a fault in
Xplain. Xplain translates the commented out delete to a delete with a subselect.
But subselects in Transact-SQL perform much worse than a select with joins.

Currently, there is no support for more advanced constructs like if-then-else or
loops. There are also no provisions to call an Xplain procedure from within Xplain.
With literal SQL this can still be done, but not portably.

xplain2sql supports two special stored procedures:

1. If the procedure starts with ‘“recompiled”; the output on SQL Server includes
a ‘“‘with recompile” option so the plan is not cached. On other platforms the
output is not changed.

2. 1If the stored procedure starts with ‘“trigger”’, the output on PostgreSQL is a
procedure that can be used as a trigger. The procedure has to conform to
the PostgreSQL specification for triggers, so it has to return an explicit value,
including null. On other platforms the output is not changed.

3.10 Enhanced auto-primary key support

If you use auto-primary generation, you sometimes need access to the last gener-
ated number. You can retrieve this number with inserted followed by the type
name. Example:

insert customer *
its name = ’Smith”.

value last id = inserted customer.

value last id.

The number is only valid, immediately after the insert. If the table has triggers,
the number may become invalid even in that case.

Names with underscores 25

4 Using xplain2sql in a legacy envi-
ronment

xplain2sql has various features that allow it to work with existing databases, cre-
ated by other tools than xplain2sql, or perhaps created by hand. This chapter
discusses the features xplain2sql has to offer here.

In these environment you usually define the database again in Xplain, but perhaps
only use the procedure output of Xplain in the database. So the existing database
remains unmodified, but Xplain queries are executed against it.

4.1 Names with underscores

Names in legacy databases frequently contain underscores, something that Xplain
sees as the end of a role. You can use quoting, an extension to Xplain, that
xplain2sql implements. Quoting an identifier removes any special treatment and
xplain2sql will just see it as a single unit, not a role and name for example. An
identifier is quoted by prefixing it with an open single quote and suffixing it with
a close single quote.

Quoting example:
type ‘legacy name’ (I9) = a, b.

get ‘legacy__name’ its ‘a’.

4.2 Primary keys

xplain2sql automatically generates a primary key column consisting of ‘id_ " fol-
lowed by the table name. xplain2sql puts the ‘id_’ in front because some output
dialects have limits on the length of identifiers, and with ‘id_’ in front the ‘id_’
gets preserved.

)

But in legacy systems you frequently find things like table name followed by *_id’.
You can use the -pkformat option to generate the primary key columns in that
case. Example using the Unix shell:

xplain2sql -pgsql -pkformat "$$s_id’ test.ddl

This will change the default format of xplain2sql to use the \$s_id format. Note
that because of shell escaping a double \$\$s is used, in other environments \$s
might suffice.

Sequences 26

4.3 Sequences

When the format of the primary key is different, the sequence names (used in
PostgreSQL for example) are different as well. Use the -sequenceformat option
to change the format. Example:

xplain2sql -pgsql -sequenceformat "$$s_ seq’ test.ddl

-sequenceformat takes one or two parameters. If only one \$\$s is present this
is assumed to be the primary key name of the table. If two are present, they are
replaced by the table namd and primary key name respectively.

4.4 Use and include

Use .use to include files without generating SQL code.

4.5 Creating views to map xplain2sql output more
closely

You can create views in SQL to map tables to something that more closely resem-
bles the output of xplain2sql. ...

4.6 Calling functions
xplain2sql allows you to call arbitrary functions using the $ syntax. Example:

get subcomponent its
component,
component its description,
$‘getcomponent__weight’ (component) as ‘total _weight’,

quantity,

$‘getcomponent_ price’ (component) as ‘cost’
where

master__component = 7component
per

component ¢ts description.

This calls two functions, getcomponent_weight and getcomponent_price. Para-
meters are normal Xplain expressions and should be valid. But they are passed as
is, it is up to you to make sure the number of arguments and the argument type
is correct.

Injection of arbitrary SQL code in expressions 27

4.7 Injection of arbitrary SQL code in expressions

It is possible to inject arbitrary SQL between statements as explained in
section 3.8. But xplain2sql also supports injection of SQL everywhere an Xplain
expression is expected, for those times you really need to modify the output.

The following example shows a procedure that returns a certain quote. It returns
a valid until date using a call to a PostgreSQL function to format it properly.
However, the valid until date is the date of the quote plus a specific number of
days, passed in as the interval parameter.

procedure document quote with quote, interval =

get quote 7quote its
$‘to_ char’(‘date_quote’ + {cast(a_interval as interval)}, "Month DD, YYYY")
as ‘valid until’.

end.

Xplain nor xplain2sql has any functions to format dates (nor should it), but for
legacy support it is sometimes easiest to work with the flow and existing code.
Natively Xplain doesn’t even have a date format, although xplain2sql has a not
well-specified date type.

But xplain2sql doesn’t have any date functions, and it would be impossible to
support them among all the dialects. PostgreSQL has lots of date functions, so
this piece of code calls the PostgreSQL cast function to cast a_ interval, an inte-
ger, into a number of days using PostgreSQL’s interval data type. Calling cast
as a function as explained in section 4.6 wouldn’t work because something as
\$cast(a_interval as interval) is not valid Xplain. That’s where the SQL
injection comes into play.

With SQL injection you are really on your own. You have to make sure it works
with the code Xplain generates.

xplain2sql.xml file 28

5 XML output

When using xplain2sql to generate output for various dialects, the names of tables
and attributes in those dialects can differ. For example, certain dialects require
quoted identifiers when they have been declared with quotes. Other dialects don’t
support quoting at all, or have non-ANSI quoting conventions. This makes it
hard to write portable code. With xplain2sql’s XML output, it becomes possi-
ble to access the generated table and column names without introducing subtle
inconsistencies in the source.

5.1 xplain2sqgl.xml file

xplain2sql will write an XML description of the generated SQL when supplied with
the -xml option. The XML file is called xplain2sql.xml. This XML file contains
the bases, types and procedures that are generated. This XML file can be used by
XSLT scripts, or other tools, to generate middleware code, or just to extract the
proper names to use for creating on-the-fly SQL.

Take for example the following Xplain:

base customer name (A40).
base address (A40).

type customer (I4) = customer name, address.
When xplain2sql is called with the -xml flag:
xplain2sql -xml sample.ddl

The generated XML looks like this (it is slightly edited for readability):

<?xml version="1.0" encoding="1S0-8859-1" 7>
<sql>
<table xplainName="customer" xplainDomain="(14)"
sqlName=""customer"’
identifier="customer"
sqlNameAsEiffelString="%"customer%"’
sqlNameAsCString="\"customer\"">
<column xplainName="customer" xplainDomain="(14)"
sqlName=""id__customer"’ sqlType="smallint"
identifier="customer"
sqlNameAsEiffelString="%"id_customer%"’
sqlNameAsCString="\"id_customer\"’
init="none" />
<column xplainName="customer name" xplainDomain="(V40)
sqlName=""customer name"" sql Type="character varying(40)"

xplain2sql.xml file 29

identifier="customer_name"
sqlNameAsEiffelString='%"customer name%
sqlNameAsCString="\"customer name\"’
init="none" />

<column xplainName="address" xplainDomain="(V40)"
sqlName=""address"' sqlType="character varying(40)
identifier="address"
sqlNameAsEiffelString="%"address%"’
sqlNameAsCString="\"address\ "’
init="none" />

< /table>
</sql>

For every type a <table> tag is generated. In this tag there are one or more
<column> tags.

Every XML tag contains three things:

1. The Xplain name and type.

2. The SQL name and type (if applicable).

If the SQL name is quoted, the name includes those quotes as many SQL
dialects regard quotes as part of the name.

3. Names useful in programming languages which try to access the database.
The ‘identifier’ attribute can be used as the name of a variable for example.
Any spaces occurring in ‘xplainName’ are replaced by underscores.
‘sqlNameAsEiffelString’ and ‘sqlNameAsCString’ contain the name as known in
the SQL dialect. They contain the proper quoting for Eiffel and C respectively.
Usually XSLT scripts are used to transform this XML and it’s a real pain to
detect and do proper quoting there, so that’s why xplain2sql already does these
things.

Another example might clarify the quoting. Let’s translate the Xplain example to
Transact-SQL.

xplain2sql -xml -tsql sample.ddl

The file xplain2sql.xml now looks like this:

<?xml version="1.0" encoding="1S0O-8859-1" 7>
<sql>
<table xplainName="customer" xplainDomain="(14)"

sqlName="[customer]"
identifier="customer"
sqlNameAsEiffelString="[customer]"
sqlNameAsCString="[customer]"
spDelete="[sp_Deletecustomer]"
spDeleteAsEiffelString="[sp__Deletecustomer]"
spDeleteAsCString="[sp_Deletecustomer]"
splnsert="[sp__Insertcustomer]"

Processing the XML file with XSLT 30

splnsertAsEiffelString="[sp_ Insertcustomer]"
splnsertAsCString="[sp_Insertcustomer]"
spUpdate="[sp_Updatecustomer|"
spUpdateAsEiffelString="[sp__Updatecustomer]"
spUpdateAsCString="[sp__Updatecustomer|">

<column xplainName="customer" xplainDomain="(14)"
sqIName="[id_customer]" sqlType="smallint'
identifier="customer"
sqlNameAsEiffelString="[id__customer|"
sqlNameAsCString="[id__customer]"
init="none" />

<column xplainName="customer name" xplainDomain="(V40)"
sqlName="[customer name]"
sql Type="[Tcustomer_name|"
identifier="customer_name"
sqlNameAsEiffelString="[customer name]"
sqlNameAsCString="[customer name|"
init="none" />

<column xplainName="address" xplainDomain="(V40)"
sqIName="[address|" sqlType="[Taddress|"
identifier="address"
sqlNameAsEiffelString="[address]"
sqINameAsCString="[address]"
init="none" />

< /table>
</sql>

5.2 Processing the XML file with XSLT

xplain2sql comes with some XSLT scripts that turn the generated XML file into
Delphi or Eiffel classes. For example the ecli_stored_procedure.xsl generates
an Eiffel class that allows one to call a stored procedure and get access to the
parameters of that procedure and the resulting output.

Usage:

Xalan \
-0 mw_retrieve_currencies.e \
-p procedureName "’retrieve currencies’" \
xplain2sql.xml ecli_stored_procedure.xsl

The name of the procedure for which a class is generated is passed as parameter.
Note that the stylesheet ecli_stored_procedure.xsl is an example. It is fully
functional, but nothing should stop you from adapting and refining it to suit your
needs. That’s why xplain2sql generates XML in order to make such customisations
possible.

Processing the XML file with XSLT 31

xplain2sql also comes with an example Makefile script, make_ecli_stored_proce-
dures.xsl, that generates a makefile that will call ecli_stored_procedure.xsl
for every stored procedure.

Tokenizing 32

6 Implementation

Xplain is written in Eiffel. This chapter explains how xplain2sql was designed and
implemented.

In figure 6.1 the flow of data through xplain2sql is depicted. In goes a file with
Xplain commands, out comes SQL code.

tokenize AT output
file.ddl —» . —»| parse input —» Xplain |—> 4 —» file.sql
input AST SQL

Figure 6.1 High-level overview of xplain2sql workings

The actual behavior is more cyclic. The input file is not first all tokenized, and
next parsed. No, the parser tokenizes as much as is needed for a certain construct,
and next generates SQL code for that construct. Than it starts tokenizing, parsing
and outputting again.

xplain2sql is a prime example and implementation of the Builder pattern
(see 6). The Director participant is implemented by the tokenizer and parser in
XPLAIN_SCANNER and XPLAIN_ PARSER. The Builder participant is the
class SQL__ GENERATOR.

In the following sections the tokenizing, parsing and sql generation are discussed
in detail, by showing how the Builder pattern is used.

6.1 Tokenizing

The tokenizer is the first stage of the Director participant. The tokenizer class is
written with Lex, see xplain_scanner.l. This file is converted by gelex to the

Eiffel class XPLAIN SCANNER. The responsibility of the tokenizer is to output
tokens.

However, the tokenizer knows a bit about sql generation, because of inline sql and
sql comments.

A {’ starts literal sql. The tokenizer doesn’t bother the parser with this (literal
sql can occur anywhere currently) and writes the sql code straight to the output
file. Literal sql of course makes an Xplain file not portable. Maybe there should
be support for sql dialect specific literal sql with something like ‘interbase{ ...
}.

A ‘==’ starts a one line comment that is also written to the output file. As not all
sql dialects support one line comments, the tokenizer calls the sqlgenerator (see

Parsing 33

section 6.3) directly so it can transform a one line comment to a multi line like
comment. Multi line comments seem to be supported by all sql dialects, so the
tokenizer writes these straight to the output file.

There’s one problem that needs to be solved someday. The default case is matched,
but it shouldn’t.

6.2 Parsing

The parser is the second stage of the Director participant. The parser is imple-
mented in typexplain_parser.y. This is Yacc (with the Bison extensions %type),
which is converted by geyacc to an Eiffel class. The responsibility of the parser
is to parse Xplain input and to give only correct Xplain to the sql generation
routines.

The parser doesn’t build a full Abstract Syntax Tree (AST), but only partial ones.
As soon as a construct has been parsed, the sqlgenerator is called. In terms of the
Builder pattern, the Products that the Builder creates are XPLAIN_ ... classes.

Within the Directory, the Interpreter pattern (see [6]) is used a lot. Simple exam-
ples are the parsing of representations, or domain restriction.

An advanced application of the Interpreter pattern is the expression parsing part,
see the partial expression inheritance hierarchy in figure 6.2. The Abstract-
Expression participant is implemented by XPLAIN_EXPRESSION. An example
of TerminalExpression is XPLAIN STRING_ EXPRESSION. An example of
NonterminalExpression is XPLAIN INFIX EXPRESSION.

The Context participant is XPLAIN UNIVERSE. This class is implemented as
a Singleton (see [6]). This class holds all objects which have a global scope (see
figure 6.3. Only XPLAIN EXTENSION is not stored in XPLAIN UNIVERSE
because the extension scope is only known within a type.

There are two Client participants: the Client XPLAIN PARSER builds the AST,
while the Client SQL_GENERATOR (see figure 6.4) is given the AST.

The AbstractExpression XPLAIN_EXPRESSION has several Interpret methods.
Method sqglvalue returns the sql code for that particular expression as converted
to be used in a sql select statement. sqlinitvalue does the same, but is specifically
for init statements. See section 6.3 for how the sql code is obtained. AS usual, the
parser also embellishes the partial AST with type information. For this conversion,
this could be kept quite simple. An example of this is found when parsing a name
(or names separated by its) in an expression. Example:

get employee its department its business_ town.

The ‘department its business_town’ is an example of an XPLAIN_ATTRIBUTE-
_ EXPRESSION. But when parsing, we don’t know this beforehand of course. So
the parser initially accepts anything a user has typed. So it would initially ac-
cept ‘its not_ an its attribute’. The name or names are stored in a linked list

SQL generator 34

XPLAIN
EXPRESSION

XPLAIN NUMBER_
EXPRESSION

XPLAIN VARIABLE
EXPRESSION

PLAIN ATTRIBUTE |

XPLAIN STRING
= a EXPRESSION

EXPRESSION

XPLAIN INFIX
EXPRESSION

Figure 6.2 Partial Xplain expression inheritance hierarchy

of XPLAIN_ATTRIBUTE_NAMEs. There after, every name in this linked
list is supplied with with its type in get_object_if wvalid_tree, a routine in
XPLAIN_PARSER. This routine returns the object for the first name in this
linked list of node. We ask this object to create the expression for us. If the object
is a variable, it returns an XPLAIN_VARIABLE_EXPRESSION. If it’s a value,
it returns an XPLAIN VALUE EXPRESSION. If it’s an attribute, it returns an
XPLAIN_ATTRIBUTE_EXPRESSION.

The parser (and all other parts of xplain2sql) use only one type of data struc-
ture: a single linked list. This could be optimized a bit, for example in
XPLAIN_UNIVERSE to make lookups a bit faster, but works well. The generic
linked list is defined in XPLAIN_NODE. For each kind of linked list a separate
class is defined. Examples are JOIN__NODE, XPLAIN ATTRIBUTE_NODE or
XPLAIN_ ATTRIBUTE NAME_ NODE.

6.3 SQL generator

The SQL generator is the Builder participant of the Builder pattern and is
implemented in the class SQL__GENERATOR. The actual sql dialect genera-
tion is done by the ConcreteBuilder participants, namely the descendants of

SQL generator 35

Figure 6.3 Xplain objects inheritance hierarchy

Figure 6.4 SQL Generator inheritance hierarchy

SQL_GENERATOR, see figure 6.4. SQL_GENERATOR is a deferred class,
doing the lowest common denominator stuff, descendants fill in the details.

As suggested by BM in [7] (chapter 24.3) the handle technique is used to
implement the SQL_GENERATOR class. A different approach could have
been to add all sql generating code to XPLAIN PARSER and inherit from

Other details 36

XPLAIN_PARSER to get the various dialects. But the handle approach is pre-
ferred. So XPLAIN_PARSER doesn’t know a single bit about generation sql code,
it just calls SQL__GENERATOR through its sqlgenerator feature at appropriate
times. This approach looks like the Bridge pattern (see [6]), but it would be a real
Bridge if the interface between XPLAIN_PARSER and SQL__ GENERATOR was
abstracted, which isn’t the case.

The code generation within SQL_GENERATOR itself is divided in two parts:
the write_ methods are the only methods called by XPLAIN PARSER. The
write_ XXXX methods check if certain options are enabled or supported. If so,
they call the corresponding create_ XX XX which outputs the sql code.

The relation between the Product (for example XPLAIN _TYPE) and the Builder
is complex if you look at how and when they call each other, but there responsibil-
ities are clear. the Product does know nothing about sql generator, it only knows
about Xplain representations. The Builder itself knows a lot about Product, but
to generate certain code, it calls Product. Product next calls the Builder back at
some other method to get the correct sql.

A good example is the creation of domains or user defined data types. In Xplain
you define a domain with:

base name (A30).
The corresponding sql code is something like:
create domain name as character(30).

The Builder accepts the Product base (XPLAIN_ BASE). To output the repre-
sentation of a domain, it asks the representation property of XPLAIN_ BASE
to give it the correct sql code. Depending on the representation, they call
SQL_GENERATOR (or its descendants) back in methods starting with the name
sqldatatype_ XXXX. In this particular case sqldatatype_char is called. This
happens continually. Creating check constraints is done by asking the Product
domain restriction (XPLAIN_DOMAIN_RESTRICTION) for its sqlcolumncon-
straint. The actual domain restriction will call SQL_ GENERATOR back in its
sqlcheck XXXX methods.

6.4 Other details

In the Builder pattern a separate client is discussed which creates the Direc-
tory (XPLAIN_PARSER) and configures it with the desired Builder object
(SQL__GENERATOR). There is no separate client with xplain2sql. That part
is handled by the execute method of the XPLAIN_PARSER itself.

The Xplain book 37

7 What is Xplain

Xplain is a non-procedural data definition and manipulation language invented by
Johan ter Bekke and completed in 1983. xplain2sql is based on the most recent
definitions of the language, see for example [1]. Xplain also refers to the Xplain
product, a full implementation of a semantic database, but in this document Xplain
always refers to the language.

This chapter gives a short introduction to Xplain, with the goal to get people who
don’t know Xplain getting interested to learn more. A good start is http://mmdb.
kbs.twi.tudelft.nl/terBekke.html. All material in this section has been taken
without getting permission :-)

7.1 The Xplain book

For English readers, the best introduction to Xplain is given in [1]. I absolutely
recommend this book, because it not only introduces Xplain, but it gives funda-
mental advise about database design and modeling. The semantic way of thinking
has helped me a lot to tackle large design problems and create excellent database
designs.

Abstract of this book (taken from Ter Bekke’s website http://mmdb.kbs.twi.
tudelft.nl/terBekke.html):

The book explains the fundamental concepts and general principles of data modeling,
with practical cases to illustrate the theory where appropriate. Recent developments in
the database area have been included. The book is organized in four main parts:

e Overview of the discipline, including an assessment of the relational theory. An
overview of seven modern data modeling approaches is also presented in this part.

e Fundamentals of data modeling, introducing semantic concepts leading to proper ob-
ject modeling.

e Data modeling, illustrated with numerous practical examples. Conversion into suitable
traditional models (including relational), by applying just a few simple rules, makes
the collection of data and query structures reliable and easier to understand.

e (ase studies. Semantic data modeling is illustrated with three large cases. They
illustrate data modeling in complex situations and the problem of formulating queries
in practical environments.

Relational systems have become widely accepted the last few years. However, many pitfalls
have also been discovered in the relational theory. This book presents an in-depth analysis
of the problems and offers a deeper understanding. By putting emphasis on the semantic
structure of a database, reliable solutions are created for both data modeling and data
manipulation problems. The theory is based on both theoretical and practical research. It
is illustrated with many examples and exercises. Semantic Data Modeling offers a sound
basis for an education in modern data modeling techniques.

http://mmdb.kbs.twi.tudelft.nl/terBekke.html
http://mmdb.kbs.twi.tudelft.nl/terBekke.html
http://mmdb.kbs.twi.tudelft.nl/terBekke.html
http://mmdb.kbs.twi.tudelft.nl/terBekke.html
http://mmdb.kbs.twi.tudelft.nl/terBekke.html
http://mmdb.kbs.twi.tudelft.nl/terBekke.html
http://mmdb.kbs.twi.tudelft.nl/terBekke.html
http://mmdb.kbs.twi.tudelft.nl/terBekke.html
http://mmdb.kbs.twi.tudelft.nl/terBekke.html
http://mmdb.kbs.twi.tudelft.nl/terBekke.html
http://mmdb.kbs.twi.tudelft.nl/terBekke.html
http://mmdb.kbs.twi.tudelft.nl/terBekke.html
http://mmdb.kbs.twi.tudelft.nl/terBekke.html
http://mmdb.kbs.twi.tudelft.nl/terBekke.html
http://mmdb.kbs.twi.tudelft.nl/terBekke.html
http://mmdb.kbs.twi.tudelft.nl/terBekke.html
http://mmdb.kbs.twi.tudelft.nl/terBekke.html
http://mmdb.kbs.twi.tudelft.nl/terBekke.html

Short introduction to Xplain 38

7.2 Short introduction to Xplain

In [3] a short introduction to Xplain is given, before showing how Xplain can be
used to model successive events, version management in that particular case.

7.2.1 Introduction

The semantic abstractions aggregation and generalization appeared for the first
time in the database literature in a series of papers by Smith and Smith ([8], [9],
[10]). These abstractions are considered to be suitable for modeling complex sit-
uations in which different types of relationships occur. Because of their nature,
they are especially useful for modeling hierarchical relationships. Many examples
can be found in literature. Considering these application areas, only minor dif-
ferences can be discovered between semantic data models and other data models
(e.g. relational and entity-relationship data models). This is not a surprise:earlier
hierarchical and network data models already enabled us to find solutions for such
situations.

The advantages of generalization appear especially in situations with many irreg-
ularities, alternatives or exceptions. These new aspects were not fully covered by
other data models. It gave semantic models a clear advantage over other existing
data models.

In this paper the advantages of semantic abstractions are further extended. Al-
though semantic concepts enable us to create data models for ordering and se-
quencing, they are hardly mentioned in literature. This is also caused by the
difficulties data models have with modeling time aspects. It is also illustrated with
the phrases is-part-of and is-a, in other data models often general need for this ex-
tended functionality appeared also in papers discussing characteristics that must
be satisfied by the next generation of database systems (literature, see original
article).

Sequencing is also important in the area of object oriented databases. Examples
can be found in literature (literature, see original article). However, often ex-
tended entity-relationship diagrams, flow diagrams or event-condition-action dia-
grams are used for the purpose. These specifications are far from complete; they
must be accompanied with many informal procedural descriptions. These specifi-
cations/descriptions are inadequate for development of the required software.

Several commercial products support some form of version management (for exam-
ple: Objectivity/DB,Itasca, ObjectStore, Ontos and Versant). However, a stan-
dard set of features for version management is lacking (literature, see original
article).

This paper presents extensions in the usage of semantic abstractions. Both ag-
gregation and generalization can be used for modeling ordering and sequencing.
Because time is involved, also the phrases was-part-of and was-a should be used

Short introduction to Xplain 39

instead of only the phrases is-part-of and is-a. The new opportunities will be
illustrated with several practical examples.

The resulting high-level specifications can be used for standardization purposes.
They can by implemented in any programming environment (e.g. C or C++) or
database environment (e.g. relational or object oriented). For a better under-
standing of the opportunities, first a short introduction to the underlying semantic
concepts is given.

7.2.2 Abstractions

This section contains a global overview of the concepts for semantic data modeling
using well-known examples. Each object will be visualized explicitly by clearly
distinguishing between identification and descriptive properties. The resulting
data models gain in semantic contents as a consequence, while ambiguities and
contradictions in the specification are avoided. Only three fundamental abstraction
types with clear graphical equivalences in the structural diagrams are required to
guarantee inherent semantic integrity. They make use of the fundamental type-
attribute relationship.

The real world is described by considering types of relevant objects, a type being
defined as a fundamental notion. The abstraction leading to a type is called
classification. The examples (i.e. instances) occurring in a database and required
for the recognition of a type are purely illustrations of the concept. The type is
not being defined hereby. Types are represented by rectangles in diagrams, see
figure 7.1. The counterpart of classification is called instantiation.

vehicle

Figure 7.1 Classification

Aggregation is defined as the collection of a certain number of types in a unit,
which in itself can be regarded as a new type (note the analogy with the mathe-
matical set concept). A type occurring in an aggregation is called an attribute of
the new type.

Aggregation allows view independence: we can discuss the obtained type (possibly
as a property) without referring to the underlying attributes. By applying this
principle repeatedly, a hierarchy of types can be set up. An example is given in
figure 7.2. Normally the hierarchy contains only aggregated types. Aggregation
is indicated by a line connecting the centers of two facing rectangle sides, while
the aggregate type is (according to its definition) placed above its attributes. Of
course, aggregation also has its counterpart: the description of a type as a set of
certain attributes is called decomposition.

Short introduction to Xplain 40

transport

vehicle destination

Figure 7.2 Aggregation hierarchy

A type is defined by listing its attributes, so we could have the following type
definitions:

type transport = vehicle, destination, delivery_ date, cargo.
type vehicle = manufacturer, model, price, fuel,

construction_ year.
type destination = client_ name, address, city, telephone number.

An example to illustrate the database contents is table 1:

transport vehicle | destination | delivery_date | cargo
t1 vl d2 19961206 paper
t2 v3 d4 19961207 milk

Type definitions carry semantics; they contain the essential properties (e.g. unique-
ness of the identifications t1 and t2 in the table above) and essential relationships
(the related vehicles v1 and v3 and the related destinations d2 and d4 must occur
in related tables). Aggregation can be described using the verb to have. Accord-
ing to the above type definition, a vehicle has a manufacturer, model, price, fuel
and construction__year. Identifications are properties denoted by type names (see
table 1 above). This interpretation implies singular identifications. Attributes
(not types!) may contain roles. An example is ‘construction__year’ related to type
‘yvear’. Roles are separated from the type by an underscore. Spaces are irrelevant
in type definitions.

The third kind of abstraction, important to conceptual models, is called gener-
alization; it is defined here as the recognition of similar attributes from various
types and combining these in a new type (note the analogy with the intersection
operation from mathematical set theory). We can equally discuss the new type
without mentioning the underlying attributes, and it can in itself again serve as a
property (i.e. it allows view independence).

Example: consider manufacturer, model, price, fuel, construction_ year, cabin,
weight, wheels, power and coupling. The corresponding type is truck. Consider,
in addition, manufacturer, model ,price, fuel, construction_ year, chassis, seats and
color, where the type might be car.

Short introduction to Xplain 41

The common attributes of the two types are: manufacturer, model, price, fuel,
construction__year. If required, these attributes result in a new type "vehicle",
which may be regarded as the generalization of truck and car. Generalization can
be represented in abstraction hierarchies, as we have seen in the case of aggregation.
This is shown in figure 7.3.

car

truck

vehicle

Figure 7.3 Generalization hierarchy

In abstraction hierarchies, generalization is schematically represented by a line
connecting facing corners of rectangles, the generalized type being placed below
the specialized ones. Generalization’s counterpart (i.e. the union of attributes
from different types) is called specialization.

In figure 7.3 we placed truck and car one behind the other, while only one line
connects to vehicle. This is the usual representation of disjoint specializations ---
i.e. a vehicle can be either a truck or a car, but not both. The combination of
a group of disjoint specializations is called a block, so truck and car constitute a
block. Not all vehicles need to be specialized; an example would be a motorcycle
occurring only as instance of vehicle.

The generalization, together with the attributes to be added to it, is (by definition
of the concept) described in the type definition of the specialization. So the type
definitions are:

type vehicle = manufacturer, model, price, fuel, construction_ year.
type truck = [vehicle], cabin, weight, wheels, power, coupling.
type car = [vehicle], chassis, seats, doors.

An example of the database contents is given in table 2. This structure imposes
uniqueness of attributes related to generalizations. Besides that, values for these
attributes may occur only once in a block (i.e. vl and v3 may not occur as values
in the corresponding truck table).

Generalization is commonly associated with the verb to be. According to the
above type definitions, a truck is a vehicle with cabin, weight, wheels, power and
coupling, while a car is a vehicle with chassis, seats and color. The introduction of
new identifications for specializations (e.g. ¢l and c2 above) makes generalization
hierarchies non-transitive dependent.

Employee and department 42

The introductory definitions of aggregation and generalization above have already
clearly demonstrated the hierarchical character of these abstractions. This will be
elaborated in the following sections with an emphasis on ordering aspects.

7.3 Employee and department

In chapter 6 of [1], a simple Xplain data model is given, see figure 7.4. It defines
the types department and employee. Every employee belongs to a department,
and a department can have 0 or more employees.

department

employee

Figure 7.4 Employee hierarchy
The database definition is:

base department name (A30).
base town (A30).

base name (A30).

base salary (R9,2).

type department (A3) = department name, business_ town.
type employee (A3) = name, home_ town, department, salary.

We can now ask certain questions (all taken from [1]) and demonstrate a feature
of Xplain:

1. Select data of the employee with the identification E3.
get employee "E3".
2. Select employees living in Guilding.

get employee its name, department
where home__town = "Guilding".

3. Select commuters.

get employee its name, home_town, department
where home__town <> department its business_ town.

Employee and department 43

4. How many employees work in Guilding?

get count employee
where department its business_town = "Guilding".

5. What is the sum of all salaries?
get total employee its salary.
6. What is the highest salary?
get mazx employee its salary.
7. Are there any employees earning more than 50.0007

get any employee
where salary > 50000.

8. Select the name of an arbitrary employee in the Purchase department.

get some employee its name
where department its department name = "Purchase’".

9. Provide an overview of the departments, including the number of employees.

extend department with numberofemployees=
count employee
per department.

get department its
department name,
business_town,
numberofemployees.

10. Select departments with more than 100 employees.

get department its
department name,
business town
where
numberofemployees > 100.

11. Find the number of departments with more than 100 employees.

get count department
where numberofemployees > 100.

12. Which department has the most employees?

Case study: Bank 44

value maximum =
max department its numberofemployees.

get department its
department name,
business__town
where
numberofemployees = maximum.

All these questions have two basic forms: if you go down in an Xplain model (from
employee to department), you use the get statement. But if you go up in an Xplain
data model (from department to employee), you first use the extend statement and
next a get.

And as you see, all queries are clear and easy to understand. The corresponding
SQL code is far harder to read.

7.4 Case study: Bank

In [1] three case studies are given. Parts of the first case study are given here.
Also there is an example file supplied with the xplain2sql distribution, bank.dd1
which contains all data definition and data manipulation presented in this case
study.

7.4.1 Case description

Consider a banking organization consisting of a few regional head offices and nu-
merous branches, each branch reporting to one of the head offices. Customers
can have various accounts with one of the offices: saving accounts (with condi-
tions), current accounts (with cheque cards, Eurocheques, credit limits), business
accounts (with credit commissions, credit limits) and mortgage accounts (with
collection indications, redemption methods, redemption accounts). The following
account information is recorded: type, currency, sum, transaction date and inter-
est. Customers may deposit shares and bonds with a branch for a fee. Deposits are
linked to customers’ accounts. The recorded share information is name, number
and nominal value, while for bonds this name, nominal value, starting number and
end number. Customers can have multiple series of one bond in one deposit.

7.4.2 Assignment

Provide a semantic model for above environment and indicate the relevant attrib-
utes. Also provide the abstraction hierarchy. Indicate some applications of the
model by using a query language.

Case study: Bank 45

7.4.3 Conceptual design

Although the relationships between head offices and branches have been described
precisely, many designers find them difficult to interpret. The model should ob-
viously contain a type defining the information about offices, because customers
have accounts there. The difference between head offices and branches is apparent
from the fact that branches belong to head offices; they are disjunct types in a
block. There are, however, additional relationships between the offices:

type office =..., case
type head office = [office], ...
type branch = [office], ..., head office.

Accounts play a paramount role in the remainder of the case study. The spe-
cializations of the type account are all obvious. They have common and separate
attributes and the individual types are disjunct. The attribute redemption account
is the only potential difficulty in the definition of the mortgage account. The sit-
uation is comparable to the relationship between head offices and branches. If
an individual mortgage account is also related to another instance of the type ac-
count, the second account could again be of the type mortgage account, which is
undesirable.

The relationship between the mortgage and redemption accounts is therefore at the
specialization level. Considering the four alternatives (mortgage, business, current
and saving accounts), the only relevant relationship appears to be the one with
the current account. We thus have the following structure:

type account = ..., case

type mortgage account = [account], ..., current account
type saving account = [account], ...

type business account = [account], ...

type current account = [account], ...

There can be little doubt about the relationship between account and office, be-
cause each account is related to a customer and held by one office and various
accounts can be related to one customer.

One of the questions which can be considered during the design of the account
concept is whether or not name, address, town and other specific customer data
should be included in a separate data structure. In this case study we prefer
to register customers. One of the best arguments is that banks must be able to
relate debit and credit amounts in the various accounts of any one customer. This
implies a relationship between the various accounts a customer may have. We
will introduce an external personal registration (e.g. fiscal identification, passport
number and Chamber of Commerce registration number), and suggest regular
checks for non-account holders in addition. The following type definitions therefore

apply:

Case study: Bank 46

type account = holder, ...
type holder = ..., office, identification.

The final section of the example describes the relationships between shares, bonds,
deposits and accounts. Of these, deposits are not physical items in banks - witness
statements like:

e deposits are linked to accounts, which suggests an aggregation link between
deposits and accounts;

e multiple series of one stock in a deposit, suggesting an aggregation link between
bonds and deposits.

The noun deposits stems from the verb to deposit, which really means "to link
stocks to accounts'. Deposits themselves can therefore not be associated with
properties. Thus we arrive at aggregation of stocks in relation to accounts, where
stocks consist of shares or bonds. Obvious specializations lead us to:

type stock = account, ..., case
type share = [stock], ...
type bond = [stock], ...

We now have defined all relationships, and the addition of the properties specified
in the description results in the following total model:

type currency (14) = currency code, exchange rate.

type office (16) = address, postalcode, town,
telephone number, postal_giro, bank,
mycase.

type head office (16) = [office], region.

type branch (16) = [office], head office.

type holder (19) = name, address, postalcode, town, office,
identification.

type account (19) = holder, balance, transaction__date,
currency, mycase.

type current account (I9) = [account], dr__interest, cr__interest,
cr_limit, cheque card, Eurocheque.

type mortgage account (I9) = [account], current account, interest,
redemption method, collection__indication.

type saving account (I9) = [account], condition, interest.

type business account (I9) = [account], dr__interest, cr__interest,
cr__commission, cr_limit.

type stock (19) = account, nominal_stockvalue,
purchase stockvalue, purchase_ date,
mycase.

type share (19) = [stock], number.

type bond (19) = [stock], start_number, last_number.

Case study: Bank

47

The above is summarized in the abstraction hierarchy in figure 7.5. This figure is
not entirely correct as there is a relation from branch to head office (every branch
has a head office), and from mortgage account to current account (every mortgage
account has a current account). In the next revision of this document, the correct
figure will be presented (when I know how to do this with MetaPost).

share

bond

stock

current
account

business
accoun

saving
accoun

mortgage
account

account

holder

head
office

branch

office

Figure 7.5 Bank abstraction hierarchy

Index

assert command 8

cascade command 11

case command 11

check command 10

default command 10

delete command 24

ertend command 11, 13, 14, 15, 44
get command 44

init command 10, 13, 14

it default command 14, 15, 18
input command 11

newline command 11

procedure command 18, 22
purge command 11, 18

some function 11, 12, 13, 14
type command 10

value command 11, 12

c
case-insensitive 12
case-sensitive 11

d
DB/2 temporary table space 13

db2upd 12

e
error level 8

g
Gobo 6

i

InterBase 11

ISE Eiffel 6

m

Microsoft SQL Server

p
PostgreSQL 11

trigger 17

s
SmartEiffel

v
VisualEiffel

6

6

11

48

49

References

J.H. ter Bekke, Semantic Data Modeling. (1992). Hemel Hempstead: Prentice
Hall.

J.H. ter Bekke, Database ontwerp (Dutch). (1993). Deventer: Kluwer Bedri-
jfswetenschappen.

J.H. ter Bekke, Semantic modeling of successive events applied to version
management. (1996). International Symposium on Cooperative Database
Systems for Advanced Applications, volume 1: Heian Shrine, Kyoto.

J.H. ter Bekke, Can we rely on SQL?. (1997). Toulouse: IEEE Computer
Society.

J.H. ter Bekke, Handleiding Xplain DBMS, versie 5.8 (in dutch). (1999).
Delft: Faculteit der Technische Wiskunde en Informatica, vakgroep Infor-
matiesystemen, groep Database Systemen.

Eric Gamma, e.a., Design Patterns. (1995). Massachusetts: Addison-Wesley
Publishing Company.
Bertrand Meyer, Object-oriented software construction, 2nd edition. (1997).

New Jersey: Prentice-Hall, Inc..

J.M. Smith and D.C.P. Smith, Database abstractions: aggregation. (1977).
Communications of the ACM 6, pp. 405-413.

J.M. Smith and D.C.P. Smith, Database abstractions: aggregation and gen-
eralization. (1977). ACM Transactions on Database Systems 2, pp. 105-133.

J.M. Smith, Principals of database conceptual design. (1978). Proceedings
NYU Symposium on database design, pp. 35-49.

50

